Balmford A, Green R, Phalan B. What conservationists need to know about farming. Proc Biol Sci. 2012;279:2714–24.
Article
PubMed
PubMed Central
Google Scholar
Krebs JR, Wilson JD, Bradbury RB, Siriwardena GM. The second silent spring? Nature. 1999;400:611–2.
Article
CAS
Google Scholar
Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, et al. Global consequences of land use. Science. 2005;309:570–4.
Article
CAS
PubMed
Google Scholar
Jedlicka J, Greenberg R, Letourneau DK. Avian conservation practices strengthen ecosystem services in California vineyards. PLoS One. 2011;6:e27347.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kross SM, Kelsey TR, Mccoll CJ, Townsend JM. Field-scale habitat complexity enhances avian conservation and avian-mediated pest-control services in an intensive agricultural crop. Agric Ecosyst Environ. 2016;225:140–9.
Article
Google Scholar
Mas AH, Dietsch TV. Linking shade coffee certification to biodiversity conservation: butterflies and birds in Chiapas, Mexico. Ecol Appl. 2004;14:642–54.
Article
Google Scholar
Taft OW, Haig SM. Landscape context mediates influence of local food abundance on wetland use by wintering shorebirds in an agricultural valley. Biol Conserv. 2006;128:298–307.
Article
Google Scholar
Bruggisser OT, Schmidt-Entling MH, Bacher S. Effects of vineyard management on biodiversity at three trophic levels. Biol Conserv. 2010;143:1521–8.
Article
Google Scholar
Wretenberg J, Part T, Berg A. Changes in local species richness of farmland birds in relation to land-use changes and landscape structure. Biol Conserv. 2010;143:375–81.
Article
Google Scholar
Verhulst J, Báldi A, Kleijn D. Relationship between land-use intensity and species richness and abundance of birds in Hungary. Agric Ecosyst Environ. 2004;104:465–73.
Article
Google Scholar
Karp DS, Ziv G, Zook J, Ehrlich PR, Daily GC. Resilience and stability in bird guilds across tropical countryside. Proc Natl Acad Sci. 2011;108:21134–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moorcroft D, Moorcroft D, Whittingham MJ, Whittingham MJ, Bradbury RB, Bradbury RB, et al. The selection of stubble fields by wintering granivorous passerine birds reflects vegetation cover and food abundance. J Appl Ecol. 2002;39:535–47.
Article
Google Scholar
Schaub M, Martinez N, Tagmann-Ioset A, Weisshaupt N, Maurer ML, Reichlin TS, et al. Patches of bare ground as a staple commodity for declining ground-foraging insectivorous farmland birds. PLoS One. 2010;5:e13115.
Article
PubMed
PubMed Central
Google Scholar
Kremen C, Iles A, Bacon C. Diversified farming systems : an agroecological, systems-based alternative to modern industrial agriculture. Ecol Soc. 2012;17:44.
Google Scholar
M’Gonigle LK, Ponisio LC, Cutler K, Kremen C. Habitat restoration promotes pollinator persistence and colonization in intensively managed agriculture. Ecol Appl. 2015;25:1557–65.
Article
PubMed
Google Scholar
Henderson IG, Ravenscroft N, Smith G, Holloway S. Effects of crop diversification and low pesticide inputs on bird populations on arable land. Agric Ecosyst Environ. 2009;129:149–56.
Article
Google Scholar
Heikinnen RK, Luoto M, Virkkala R, Rainio K. Effects of habitat cover, landscape structure and spatial variables on the abundance of birds in an agricultural – forest mosaic. J Appl Ecol. 2004;41:824–35.
Article
Google Scholar
De La Montaña E, Rey-Benayas JM, Carrascal LM. Response of bird communities to silvicultural thinning of Mediterranean maquis. J Appl Ecol. 2006;43:651–9.
Article
Google Scholar
Perfecto I, Vandermeer JH, Bautista GL, Nuñez GI, Greenberg R, Bichier P, et al. Greater predation in shaded coffee farms : the role of resident neotropical birds. Ecology. 2004;85:2677–81.
Article
Google Scholar
Mulwa RK, Böhning-Gaese K, Schleuning M. High bird species diversity in structurally heterogeneous farmland in western Kenya. Biotropica. 2012;44:801–9.
Article
Google Scholar
Haila Y, Nicholls AO, Hanski IK, Raivio S. Stochasticity in bird habitat selection : year-to-year changes in territory locations in boreal forest bird assemblage. Oikos. 1996;76:536–52.
Article
Google Scholar
Laiolo P. Spatial and seasonal patterns of bird communities in Italian agroecosystems. Conserv Biol. 2005;19:1547–56.
Article
Google Scholar
Luther D, Hilty J, Weiss J, Cornwall C, Wipf M, Ballard G. Assessing the impact of local habitat variables and landscape context on riparian birds in agricultural, urbanized, and native landscapes. Biodivers Conserv. 2008;17:1923–35.
Article
Google Scholar
Kelt DA, Engilis AJ, Monárdez J, Walsh R, Meserve PL, Gutiérrez JR. Seasonal and multiannual patterns in avian assemblage structure and composition in northern Chilean thorn-scrub. Condor. 2012;114:30–43.
Article
Google Scholar
Gutiérrez JR, Meserve PL, Kelt DA, Engilis AJ, Andrea Previtali M, Bryan Milstead W, et al. Long-term research in Bosque fray Jorge national park: twenty years studying the role of biotic and abiotic factors in a Chilean semiarid scrubland. Rev Chil Hist Nat. 2010;83:69–98.
Article
Google Scholar
Elsen PR, Kalyanaraman R, Ramesh K, Wilcove DS. The importance of agricultural lands for Himalayan birds in winter. Conserv Biol. 2017;31:416–26.
Article
PubMed
Google Scholar
Guyot C, Arlettaz R, Korner P, Jacot A, Vickery J, Arlettaz R, et al. Temporal and spatial scales matter: circannual habitat selection by bird communities in vineyards. PLoS One. 2017;12:e0170176.
Article
PubMed
PubMed Central
Google Scholar
Cox RL, Underwood EC. The importance of conserving biodiversity outside of protected areas in mediterranean ecosystems. PLoS One. 2011;6:e14508.
Article
CAS
PubMed
PubMed Central
Google Scholar
Santibáñez F, Uribe J. Atlas agroclimático de Chile: regiones VI y VII. Santiago: Universidad de Chile, Fac. de Cs. Agrarias y Forestales; 1993.
Google Scholar
La GR. Vegetación natural de Chile: clasificación y distribución geográfica. Santiago: Editorial Universitaria; 1994.
Google Scholar
Ralph C, Droege S, Sauer J. Managing and monitoring birds using point counts: standards and applications. USDA For Serv Gen Tech Rep PSW-GTR-149. 1995. PSW-GTR-14:161–8.
Merenlender AM, Reed SE, Heise KL. Exurban development influences woodland bird composition. Landsc Urban Plan. 2009;92:255–63.
Article
Google Scholar
Estades CF. Bird-habitat relationships in a vegetational gradient in the Andes of central Chile. Condor. 1997;99:719–27.
Article
Google Scholar
Martinez D, Gonzalez G. Las Aves de Chile: Nueva guía de campo. Santiago: Ediciones del Naturalista; 2004.
Google Scholar
Remsen JVJ, Areta JI, Cadena CD, Claramunt S, Jaramillo A, Pacheco JF, et al. A classification of the bird species of South America. American Ornithologists’ Union. 2016. http://www.museum.lsu.edu/~Remsen/SACCBaseline.htm. Accessed 16 Dec 2016.
ESRI. ArcGis desktop 9.2 Environmental systems research institute. Redlands, California. 2006. http://www.esri.com/.
Bowen ME, McAlpine CA, House APN, Smith GC. Agricultural landscape modification increases the abundance of an important food resource: mistletoes, birds and brigalow. Biol Conserv. 2009;142:122–33.
Article
Google Scholar
Kang W, Minor ES, Park C, Lee D. Effects of habitat structure, human disturbance, and habitat connectivity on urban forest bird communities. Urban Ecosyst. 2015;18:857–70.
Article
Google Scholar
Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM. Mixed effects models and extensions in ecology with R. Statistics. New York: Springer; 2009.
Book
Google Scholar
Liang J, Hua S, Zeng G, Yuan Y, Lai X, Li X, et al. Application of weight method based on canonical correspondence analysis for assessment of anatidae habitat suitability: a case study in east dongting lake, middle china. Ecol Eng. 2015;77:119–26.
Article
Google Scholar
Azpiroz AB, Blake JG. Associations of grassland birds with vegetation structure in the northern Campos of Uruguay. Condor. 2016;118:12–23.
Article
Google Scholar
Guisan A, Weiss SB, Weiss AD. GLM versus CCA spatial modeling of plant species distribution. Plant Ecol. 1999;143:107–22.
Article
Google Scholar
Burnham KKP, Anderson DRD. Model selection and multimodel inference. New York: Springer; 2004.
Book
Google Scholar
R Development Core Team. R: a language and environment for statistical computing. R Found Stat Comput. 2016;1(3.3):409.
Google Scholar
Stockwell DR, Peterson AT. Effects of sample size on accuracy of species distribution models. Ecol Modell. 2002;148:1–13.
Article
Google Scholar
Buckingham DL, Peach WJ, Fox DS. Effects of agricultural management on the use of lowland grassland by foraging birds. Agric Ecosyst Environ. 2006;112:21–40.
Article
Google Scholar
Pelosi C, Bonthoux S, Castellarini F, Goulard M, Ladet S, Balent G. Is there an optimum scale for predicting bird species’ distribution in agricultural landscapes? J Environ Manage. 2014;136:54–61.
Article
PubMed
Google Scholar
Berg Å, Wretenberg J, Żmihorski M, Hiron M, Pärt T. Linking occurrence and changes in local abundance of farmland bird species to landscape composition and land-use changes. Agric Ecosyst Environ. 2015;204:1–7.
Article
Google Scholar
Rodríguez-Estrella R. Land use changes affect distributional patterns of desert birds in the Baja California peninsula, Mexico. Divers Distrib. 2007;13:877–89.
Article
Google Scholar
Jackman S. pscl: Classes and Methods for R Developed in the Political Science Computational Laboratory, Stanford University. 2015. Department of Political Science, Stanford University. Stanford, California. R package version 1.4.9. http://pscl.stanford.edu/. Accessed 16 Jan 2016.
Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.
Article
Google Scholar
Barton K. MuMIn: multi-model inference. 2016. http://cran.r-project.org/web/packages/MuMIn/index.html.
Brandolin PG, Blendinger PG. Effect of habitat and landscape structure on waterbird abundance in wetlands of central Argentina. Wetl Ecol Manag. 2016;24:93–105.
Article
Google Scholar
Oksanen J. Design decisions and implementation details in vegan. 2016;:1–11. https://cran.r-project.org/web/packages/vegan/vignettes/decision-vegan.pdf. Accessed 9 Jul 2016.
Graffelman J, Tuft R. Site scores and conditional biplots in canonical correspondence analysis. Environmetrics. 2004;15:67–80.
Article
CAS
Google Scholar
Palmer MW. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology. 1993;74:2215–30.
Article
Google Scholar
Estades C, Vukasovic MA. Estado de conservación de las Aves de la región de O’Higgins. In: Serey I, Ricci M, Smith-Ramírez C, editors. Libro rojo de la región de O’Higgins. Rancagua: Corporación Nacional Forestal – Universidad de Chile; 2007. p. 53–8.
Google Scholar
Cody ML. Chilean bird distribution. Ecology. 1970;51:455–64.
Article
Google Scholar
González-Acuña D, Riquelme-Salasar P, Cruzatt-Molina J, López-Sepúlveda P, Moreno-Salas L, Figueroa-Rojas R. Dieta de la codorniz californiana (callipepla californica) en áreas agrícolas del Centro sur de Chile. Rev Cient FCV-LUZ. 2013;23:312–7.
Google Scholar
Figueroa R, Corales S. Seasonal diet of the aplomado falcon (falco femoralis) in an agricultural area of araucania, southern Chile. J Raptor Res. 2005;39:135–7.
Google Scholar
Jaksic FM, Lazo I. Response of a bird assemblage in semiarid Chile to the 1997-1998 El Niño. Wilson Bull. 1999;111:527–35.
Google Scholar
Lazo I, Anabalon JJ. Dinamica reproductiva de un conjunto de Aves Passeriformes de la sabana de espinos de Chile central. Ornitol Neotrop. 1992;3:57–64.
Google Scholar
Pithon JA, Beaujouan V, Daniel H, Pain G, Vallet J. Are vineyards important habitats for birds at local or landscape scales? Basic Appl Ecol. 2016;17:240–51.
Article
Google Scholar
Martin EA, Viano M, Ratsimisetra L, Laloë F, Carrière SM. Maintenance of bird functional diversity in a traditional agroecosystem of Madagascar. Agric Ecosyst Environ. 2012;149:1–9.
Article
Google Scholar
Parish T, Lakhani KH, Sparks TH. Between bird population modelling the relationship and other field margin variables and hedgerow I. Species richness of winter, summer and attributes. Birds breeding. J Appl Ecol. 1994;31:764–75.
Article
Google Scholar
Hinsley SA, Bellamy PE. The influence of hedge structure, management and landscape context on the value of hedgerows to birds: a review. J Environ Manage. 2000;60:33–49.
Article
Google Scholar
Padoa-Schioppa E, Baietto M, Massa R, Bottoni L. Bird communities as bioindicators: the focal species concept in agricultural landscapes. Ecol Indic. 2006;6:83–93.
Article
Google Scholar
Sierro A, Arlettaz R, Naef-Daenzer B, Strebel S, Zbinden N. Habitat use and foraging ecology of the nightjar in the Swiss alps: towards a conservation scheme. Biol Conserv. 1994;2001(98):325–31.
Google Scholar
Whittingham MJ, Bradbury RB, Wilson JD, Morris AJ, Perkins AJ, Siriwardena GM. Foraging patterns, nestling survival and territory distribution on lowland farmland. Bird Study. 2001;48:257–70.
Article
Google Scholar
Whittingham MJ, Krebs JR, Swetnam RD, Thewlis RM, Wilson JD, Freckleton RP. Habitat associations of British breeding farmland birds. Bird Study. 2009;56:43–52.
Article
Google Scholar
Hiron M, Berg Å, Eggers S, Josefsson J, Pärt T. Bird diversity relates to agri-environment schemes at local and landscape level in intensive farmland. Agric Ecosyst Environ. 2013;176:9–16.
Article
Google Scholar
Berg Å. Breeding birds in short-rotation coppices on farmland in central Sweden—the importance of Salix height and adjacent habitats. Agric Ecosyst Environ. 2002;90:265–76.
Article
Google Scholar
ODEPA. Agricultura chilena 2014:una perspectiva a mediano plazo. 2005; 242. http://www.odepa.cl/articulo/agricultura-chilena-2014una-perspectiva-de-mediano-plazo/. Accessed 16 Sept 2014.
Fahrig L, Girard J, Duro D, Pasher J, Smith A, Javorek S, et al. Farmlands with smaller crop fields have higher within-field biodiversity. Agric Ecosyst Environ. 2015;200:219–34.
Article
Google Scholar
Clavel J, Julliard R, Devictor V. Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ. 2011;9:222–8.
Article
Google Scholar
Karp DS, Rominger AJ, Zook J, Ranganathan J, Ehrlich PR, Daily GC. Intensive agriculture erodes β-diversity at large scales. Ecol Lett. 2012;15:963–70.
Article
PubMed
Google Scholar
Castaño-Villa GJ, Ramos-Valencia SA, Fontúrbel FE. Fine-scale habitat structure complexity determines insectivorous bird diversity in a tropical forest. Acta Oecol. 2014;61:19–23.
Article
Google Scholar
Steffan-Dewenter I, Nzenberg UM, Rger CB, Thies C, Tscharntke T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology. 2002;83:1421–32.
Article
Google Scholar
Azpiroz A, Blake J. Associations of grassland birds with vegetation structure in the northern Campos of Uruguay associations of grassland birds with vegetation structure in the northern Campos of Uruguay. Condor. 2016;118:12–23.
Article
Google Scholar
Orellana JI, Smith-Ramírez C, Rau JR, Sade S, Gantz A, Valdivia CE. Phenological synchrony between the austral thrush turdus falcklandii (Passeriformes : turdidae) and its food resources within forests and prairies in southern Chile. Rev Chil Hist Nat. 2014;87:1–8.
Article
Google Scholar
Gavier-Pizarro GI, Calamari NC, Thompson JJ, Canavelli SB, Solari LM, Decarre J, et al. Expansion and intensification of row crop agriculture in the pampas and espinal of Argentina can reduce ecosystem service provision by changing avian density. Agric Ecosyst Environ. 2012;154:44–55.
Article
Google Scholar
Barbaro L, Brockerhoff EG, Giffard B, van Halder I. Edge and area effects on avian assemblages and insectivory in fragmented native forests. Landsc Ecol. 2012;27:1451–63.
Article
Google Scholar
Somers CM, Morris RD. Birds and wine grapes: foraging activity causes small-scale damage patterns in single vineyards. J Appl Ecol. 2002;39:511–23.
Article
Google Scholar
Archuby D, Marti L, Montalti D, Soave G, Camperi A, Arambarri A, et al. Alimentación del cabecitanegra austral (carduelis barbata) Durante el otoño. Hornero. 2007;22:65–8.
Google Scholar
Lopez-Calleja MV. Dieta de zonotrichia capensis (emberizidae) y diuca diuca (fringillidae): efecto de la variación estacional de los recursos tróficos y la riqueza de Aves granívoras en Chile central. Rev Chil Hist Nat. 1995;68:321–31. Wiens 1984.
Google Scholar
Simeone A, Valencia JC, Schlatter R, Lanfranco D, Ide S. Depredación de Aves sobre larvas de rhyacionia buoliana (Schiff.) (Lepidoptera: tortricidae) en plantaciones jóvenes de pinus radiata D.Don en el sur de Chile. Bosque. 1997;18:67–75.
Article
Google Scholar
Fuentes ER, Hoffmann AJ, Poiani A, Alliende MC. patterns in the Chilean matorral. Oecologia. 1986;68:358–66.
Article
PubMed
Google Scholar
Armesto JJ, Arroyo MTK, Hinojosa LF. The mediterranean environment of central Chile. In: Veblen TT, Young KR, Orme AR, editors. The physical geography os south America. New York: Oxford University Press; 2007. p. 184–99.
Google Scholar
Henderson IG, Cooper J, Fuller RJ, Vickery J. The relative abundance of birds on set-aside and neighbouring fields in summer. J Appl Ecol. 2000;37:335–47.
Article
Google Scholar
Marshall EJP, Brown VK, Boatman ND, Lutman PJW, Squire GR, Ward LK. The role of weeds in supporting biological diversity within crop fields. Weed Res. 2003;43:77–89.
Article
Google Scholar
Cunningham HM, Chaney K, Bradbury RB, Wilcox A. Non-inversion tillage and farmland birds: a review with special reference to the UK and Europe. Ibis. 2004;146:192–202.
Article
Google Scholar
Salvande M, Figueroa JA, Armesto JJ. Quantity component of the effectiveness of seed dispersal by birds in the temperate rainforest of chiloé, Chile. Bosque (Valdivia). 2011;32:39–45.
Article
Google Scholar
ODEPA. Estadisticas productivas. 2016. http://www.odepa.gob.cl/estadisticas/productivas/. Accessed 1 Jan 2016.
Tuck SL, Winqvist C, Mota F, Ahnström J, Turnbull LA, Bengtsson J, et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J Appl Ecol. 2014;51:746–55.
Article
PubMed
PubMed Central
Google Scholar
Tscharntke T, Milder JC, Schroth G, Clough Y, Declerck F, Waldron A, et al. Conserving biodiversity through certification of tropical agroforestry crops at local and landscape scales. Conserv Lett. 2015;8:14–23.
Article
Google Scholar
Kremen C, M’Gonigle LK. Small-scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. J Appl Ecol. 2015;52:602–10.
Article
Google Scholar