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Abstract

Background: Understanding the role of agroecosystems as habitat for wildlife is crucial for long-term conservation
planning, as different crop stratification and landscape elements can influence bird communities, which are also
affected by seasonality. The goal of our study was to determine how agricultural landscapes varying in land cover
characteristics affect bird richness and abundance. Bird surveys were conducted at 110 locations within agricultural
landscapes in central Chile. The surveyed areas were characterized by land cover at two scales (50 and 500 m radii)
through direct observation and photo-interpretation, during winter and spring seasons. Generalized Linear Mixed
Models were used to evaluate the effects of different agricultural land covers on bird species and communities.

Results: Our results show that birds were more abundant during winter, in particular for insectivorous and
granivorous birds, and that bird species richness was significantly increased due to cover provided by hedgerows at
the plot scale.

Conclusions: We found that abundance of some bird species in agroecosystems in central Chile was higher in
winter than in spring, and that overall bird richness was favored by structural diversity including non-crop structures
such as hedgerows, which thus may be relevant for improving bird conservation management in temperate
agroecosystems. Our results suggest that native vegetation proximity and area may affect seasonal changes in bird
communities at larger scales, relationships which warrant further study.
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Background
Agriculture is one of the main threats to biodiversity con-
servation throughout the world [1–3]. Among the limited
number of wild species able to persist in agroecosystems,
birds are particularly important, for example in biological
control of agricultural pests [4, 5] or using birds as bio-
indicators of agricultural sustainability [6]. Bird presence
in agroecosystems depends on the type of crop and its
structural heterogeneity (e.g., a grassland with low vertical
stratification vs trees with high vertical stratification), as
well as the type of agricultural management and landscape
composition [7–9]. For example, Verhulst et al. [10] found
that intensive conventional management of vineyards
(high input of external agrochemicals) significantly de-
creased bird richness, compared with an abandoned

vineyard. A long-term study in Costa Rica showed that
low intensity management in agroecosystems (e.g., poly-
cultures with high structural diversity) can provide higher
resilience and stability of the bird community than high
intensity agricultural management [11]. Moorcroft et al.
[12] found that the abundance of some granivorous spe-
cies of conservation concern were associated with high
amounts of weed seed and a larger proportion of bare soil.
Bare ground in agroecosystems has been observed to be
an important component of habitat for ground-foraging
insectivorous birds [13]. Diversified farming systems that
increase structural and temporal diversity of crops (poly-
cultures, crop rotations, hedgerows) and native vegetation
(riparian vegetation, forest fragments, and forest) within
the farm can favor the presence of wildlife in agroe-
cosystems [14], for example, by providing habitat for
insect pollinators through non-crop hedgerows in
California [14, 15] or in the UK, where crop rotation
(annual crops), fallows, and non-crop hedgerows were
found positive for birds [16].
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Landscape heterogeneity and vegetation structure can
enhance the richness and abundance of birds within
agroecosystems by increasing the number of ecological
niches [17, 18]. For example, bird richness was higher in
Hungarian vineyards with greater diversity of landscape
elements (e.g., shrubs) [10], and shaded coffee polycul-
tures harbored more bird species than monoculture
coffee farms [19]. Likewise, Mulwa et al. [20] reported
that bird richness and abundance were higher in subsist-
ence agriculture polycultures than in high intensity sugar-
cane monocultures. Vegetation diversity and structure
influence bird presence at plot and landscape scales, with
some forest birds preferring diverse environments instead
of homogeneous ones [21]. Laiolo [22] found that vine-
yards were utilized by birds as habitat, but that this rela-
tionship depended more on the effects of the landscape
matrix and season than on the vineyard itself. Luther et al.
[23] found that bird abundance was related with plot and
context variables, while bird richness was related solely
with plot-level variables, such as shrub species richness.
Temperate agroecosystems follow seasonal abiotic

variations that may influence wildlife communities due
to the availability of food resources [24, 25]. In the
Himalayas, Elsen et al. [26] demonstrated the importance
of low intensity agriculture (small farms with diverse
annual crops, orchards and small woodlots) for increasing
abundance of forest birds during winter. Additionally,
Guyot et al. [27] reported a significant seasonal influence
on bird abundance in vineyards in Switzerland, with
greater abundance during winter. The effects of intensive
agricultural landscapes on bird communities in temperate
regions of South America are poorly documented, yet un-
derstanding the role of agricultural lands as habitat for
birds is crucial for long-term conservation planning in this
region, particularly because the land surface area formally
protected for conservation purposes in parks and reserves
is low [28]. The aim of this study was to determine the role
of agricultural landscapes as bird habitat in central Chile.
We hypothesized a seasonal influence on bird community
composition. Secondly, we expected that agricultural land
cover with more vertical complexity would support more
species than less stratified land cover, due to their similarity
to native vegetation (scrubland) with highly vertical stratifi-
cation. Thirdly, we expected higher bird abundance in low
stratification crops due to their association with bird flocks.
Finally, we expected that more specialized scrubland birds
(e.g. ground-dwelling species, such as Rhinocryptids),
would be strongly associated with the presence of native
vegetation (high structural complexity).

Methods
Study area
The study was conducted in agricultural landscapes
south of the city of Santiago, Chile (Fig. 1), one of the

most developed agricultural regions in the country.
The landscape is composed of different annual crops,
prairies, fallows, orchards, and vineyards. The region
has a Mediterranean climate (mean precipitation:
419 mm; mean temperature: 13.6 °C) [29]. The native
vegetation in the area is dominated by sclerophyllous
woodlands (e.g., Quillaja saponaria) and scrublands
(e.g., Acacia caven) [30].

Bird surveys
During the austral winter (June) and spring (October-
November) of 2009 we recorded all the birds sighted
and heard in 10-min, 50-m radius point counts at 110
survey locations (Fig. 1) [31, 32]. Birds were surveyed
between 08:00 and 12:00 h by the same observer
(A.M.S.), always under fair weather conditions. Surveys
were conducted from lightly trafficked roads bordering
agricultural areas. No counts were conducted in the
presence of passing vehicles. In addition to counting all
birds seen and heard, we recorded visibility as a covari-
ate thought to affect the probability of detection. In
order to assess visibility, we estimated the percentage of
visibility from each of the survey points (average ± SD,
81.7% ± 18.5). The feeding behavior of all birds analyzed
in the study was summarized from [33, 34] and scientific
and common names were obtained from [35].

Land cover characteristics
We visually estimated land cover based on the percent-
age of crop or non-agricultural vegetation we observed
at two spatial scales: plot (p) and landscape (L), using
50 and 500 m radii around the survey point, respect-
ively. In addition to a visual assessment in the field, we
estimated the area of each land use type through photo-
interpretation of satellite images from Google Earth
(Mountain View, California, USA), with a resolution of
0.43 m pixel size and processed with the ArcGIS 9.2 soft-
ware (Redlands, California, USA) [36]. Table 1 shows the
land cover classes used for both spatial scales.

Statistical analyses
In order to determine the relative influence of plot and
landscape-scale variables and season on bird abundance,
we used two methods: Model Averaging of Generalized
Linear Mixed Models (GLMMs) [37–39] and Canonical
Correspondence Analysis (CCA) [40, 41]. These tech-
niques were chosen because GLMMs allow the selection
of a species-specific subset of explanatory variables,
while CCA allows all species to be modeled using the
same set of environmental variables in order to obtain a
graphic result for the community [42]. Model-averaging
coefficients in GLMMs allows incorporating uncertainty
from several models rather than relying on selecting a
single best model, thus increasing the likelihood of a
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Fig. 1 Location of bird survey plots in agricultural areas around Santiago, Chile. Maipo river is shown in the middle of the map, and Santiago city
is shown in grey at the top of the map

Table 1 Description of land cover classifications at plot (p) and landscape scale (L) of the study area and its proportion

Land cover categorya Scale (radii) Description Proportion of land
covers at each scale

Low crops (p) 50 m Cereals and vegetables. Plowed soil or soil with stubble of previous crops and weeds. 40%

Hedgerows (p) 50 m Lawns, shrubs and trees. Arboreal linear living fences, usually made to
separate properties.

8%

Urban development (p) 50 m Houses, sheds and greenhouses. 2%

Orchards (p) 50 m Vineyards and orchards of apples, pears, plumbs, avocados, walnuts, almonds. 39%

Native vegetation (p) 50 m Scleorphyllous woodland (Chilean matorral). 1%

Roads (p) 50 m Pavement and/or dirty roads 10%

Low crops (L) 500 m Cereals and vegetables. Plowed soil or soil with stubble of previous crops and weeds. 40%

Urban development (L) 500 m Houses, sheds and greenhouses. 11%

Orchards (L) 500 m Vineyards and orchards of apples, pears, plumbs, avocados, walnuts, almonds. 47%

Native vegetation (L) 500 m Scleorphyllous woodland (Chilean matorral). 2%
aHighly correlated variables not included in the analysis (see Methods)
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more robust prediction [39, 43]. All analyses were
performed in R (version 3.3.0 [44]. To avoid problems
involved in modelling rare species, we conservatively
restricted all bird analyses to include those species and
groups for which we had records in five or more plots
per season [45–48]. We evaluated the effect of season by
comparing community abundance, richness, and bird
dietary groups using paired t-Student tests.
Prior to running our GLMMs and CCA models, we

tested multicollinearity between variables by calculating
Pearson’s correlations between all pairs to ensure that
no variables were strongly correlated (|r| < 0.45) [37, 38,
49]. Due to the high correlation between low crops (p),
low crops (L), orchards (p), and orchards (L) for all spe-
cies, we chose to run models with only one of these four
variables; the variable selected varied by species and was
chosen according to the highest R squared in an intra-
specific model comparison (see Table 1 and Additional
file 1). Because the predictor variables for land cover
were in different scales, we standardized all the variables
to a mean of 0 and standard deviation of one beforehand
to enable comparisons.
We then compared the Poisson and Negative Binomial

distributions to assess the best model fit for each species.
We used “odTest” function in the “pscl” package in R to
test for overdispersion with a likelihood ratio (LR) test
of the null hypothesis that the data followed a Poisson
distribution [50]. Based on this analysis, we used the
Negative Binomial family of GLMMs in all models
except for the House wren (winter) and richness (both
seasons), in which we used a Poisson distribution due to
better fit. Finally, we fit GLMMs using the package
“lme4” [51], with visibility as a random effect, and per-
formed model averaging using the package “MuMIn”
[52]. All models were ranked according to the QAICc, a
quasi-likelihood version of AICc suitable for over-
dispersed count data [43]. Variables included in the most
parsimonious models with ΔQAICc <2 were identified
by averaging their estimated coefficients and associated
standard errors [43]. Coefficients and standard errors for
the variables that had p-values <0.05 are presented in
the Additional file 1. The adjusted-R2 value for each
model was calculated as the average of the adjusted-R2

values of the most parsimonious models [38]. The per-
formance of models was assessed by examining the
spread of model residuals and the adjusted-R2 values.
To identify dominant relationships between each bird

species and land cover, we used a linear combination of
environmental variables that allowed for the species
niches to be described in a canonical correspondence ana-
lysis (CCA) [40]. In order to make unbiased comparisons
between the GLMM and CCA analyses, we used the same
variables that were used in the GLMM analysis. However,
in order to adequately visualize the relevance of each land

cover variable at two scales (plot and landscape), we in-
cluded all the variables analyzed in the study (see Table 1).
CCA assumes that species’ responses along environmental
gradients are unimodal and reduces the species data set to
a few orthogonal gradients (i.e., CCA axes), which reflect
the influence of the environmental variables included in
the analysis [40, 53].
Results from CCA were visually represented on an

ordination graph. We plotted weighted averages in order
to find the relationships between birds and agricultural
land cover and to allow better representation of the spe-
cies abundance [40, 54, 55]. We conducted separate
CCAs for data collected in winter and spring to explore
whether there was seasonal variation in the relationship
between species abundance and environmental variables.
Finally, we applied a Monte Carlo test with 999 permu-
tations to evaluate the significance of each CCA [56].

Results
We recorded 42 bird species in the study area, but only 27
species (Table 2) were analyzed according to our model se-
lection criteria. Results from the t-test indicated that there
was significantly greater abundance in winter (non-breed-
ing) compared with the spring (breeding) season (P <
0.001, Fig. 2), while richness was only marginally greater in
winter compared with spring (P = 0.0504, Fig. 2). Insecti-
vores (t-test, P = 0.006) and native granivores (t-test, P =
0.002) had significantly lower abundance in spring,
whereas exotic granivores and omnivores (t-test, P = 0.14,
and P = 0.06, respectively) showed no significant difference
in abundance between seasons (Fig. 3).
Overall, individual species models indicated that during

the winter, species were significantly positively affected
with the proportion of shrub hedgerows at the plot scale
followed by the cover of orchards at plot and/or landscape
scale (Figs. 4 and 5). Other variables affecting the winter
abundance of bird species were the percentage cover of
low crops (p), the amount of urban development, and road
cover. During the spring, low crops and orchards at both
scales had a significant positive influence on the abun-
dance of several species (low crops five species, orchards
three species, Figs. 4 and 5). Road cover and urban devel-
opment also positively influenced the abundance of two
species and one negatively (Figs. 4 and 5). Native vegeta-
tion cover was positively related to the abundance of Fire
eyed diucon in both seasons and Austral blackbird only in
spring.
The first two CCA axes explained 62.6 and 59.9% of

the canonical variance in winter and spring, respectively
(Fig. 6). At the community level, CCA showed that
hedgerows and native vegetation were associated with
higher number of species in winter. In spring this pat-
tern changed and orchards and low crops grouped the
majority of the species. A few species were associated
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with the same agricultural land cover characteristics dur-
ing both seasons, including the Southern lapwing and
Chilean swallow (associated with low crops at both
scales), and Rock dove (associated with urban develop-
ment (L)). Groups of birds based on diet did not appear
to be associated with any particular land cover type.

Discussion
Bird composition (abundance and species) were affected
by agricultural land cover, and various species could per-
sist within agroecosystems. Our study shows that agri-
cultural environments provide habitat for a significant
proportion (56%, see Additional file 1) of the avifauna of
central Chile, when wetland, high elevation mountains,
and coastal habitats are not considered [57]. Season
strongly affected the relative abundance and diversity of
birds in agricultural landscapes in the study area. As we
hypothesized, this effect was stronger in winter, when

shelter from cold weather conditions and food resource
scarcity are issues. The seasonal effect that allowed
higher diversity and abundance in winter is likely be
related to more mild weather conditions (i.e., warmer
temperature, lower precipitation) in our study area the
central valley compared to nearby mountain habitats.
The seasonal altitudinal movements of birds have previ-
ously described in Chile by Cody [58] and Kelt et al.
[24]. Guyot et al. [27] found similar patterns in which
bird richness and abundance were higher in winter
within vineyards. Agricultural landscapes likely provide
some alternative feeding resources during winter for
birds that breed in higher elevations, including seeds
and invertebrates [59, 60]. Guyot et al. [27] suggested
that seasonality patterns in bird abundance were related
with presence of winter flocks, a pattern also observed
in this study for some species (e.g. Black-chinned siskin,
Southern lapwing). Additionally, we also suggest that

Table 2 Bird species analyzed and dietary group (G granivores; I insectivores; O omnivores; C carnivores; N nectarivore)

Common name Symbol Scientific name Diet Feeding behavior

White tailed Kite WTKI Elanus leucurus C Soaring/Ground forager

American kestrel AMKE Falco sparverius C Soaring/Ground forager

Green backed firecrown GBFI Sephanoides sephaniodes N Flower forager

House Wren HOWR Troglodytes musculus I Foliage forager

Tufted Tit tyrant TTTY Anairetes parulus I Foliage forager

Fire eyed diucon FEDI Xolmis pyrope I Aerial forager

White crested elaenia WCEL Elaenia albiceps I Foliage forager

Plain-mantled tit-spinetail PMTS Leptasthenura aegithaloides I Foliage forager

Dark-faced ground-tyrant DFGT Muscisaxicola macloviana I Ground forager

Chilean swallow CHSW Tachycineta leucopyga I Aerial forager

Picui ground-dove PIGD Columbina picui G Ground forager

Eared Dove EADO Zenaida auriculata G Ground forager

Common diuca finch CDFI Diuca diuca G Ground forager

Band-tailed sierra-finch BTSF Phrygilus alaudinus G Ground forager

Grassland yellow-finch GYFI Sicalis luteola G Ground forager

Rufous-collared sparrow RCSP Zonotrichia capensis G Ground forager

Black-chinned siskin BCSI Spinus barbata G Ground forager

California quail CAQU Callipepla californica G (E) Ground forager

Rock pigeon ROPI Columba livia G (E) Ground forager

House sparrow HOSP Passer domesticus G (E) Ground forager

Austral blackbird AUBL Curaeus curaeus O Ground forager

Long-tailed meadowlark LTME Sturnella loyca O Ground forager

Shiny cowbird SHCO Molothrus bonariensis O Ground forager

Southern lapwing SOLA Vanellus chilensis O Ground forager

Yellow-winged blackbird YWBL Agelasticus thilius O Ground forager

Austral thrush AUTR Turdus falcklandii O Ground forager

Chimango caracara CHCA Milvago chimango O Soaring/Ground forager

Exotic species are marked with an (E)
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other altitudinal (Dark-faced ground-tyrant) and longitu-
dinal (Green backed firecrown) migrations may play a role
in increasing the abundance and richness in central Chile
[61]. In addition, the increase in abundance of native birds
during winter in agricultural areas could also be related
with a reduction in the management operations within the

agricultural fields (labors, use of agrochemicals, etc.) that
also can favor the quality of agroecosystem as habitat
during winter.

Land cover effect
Our models showed that non-crop land cover in agricul-
tural lands play a key role in structuring bird communi-
ties in the agroecosystems of central Chile. Hedgerows
at the plot scale increased the abundance of the majority
of species analyzed in this study during winter (GLMMs,
Fig. 5a; CCA Fig. 6a), and may contribute to species
supplementary sources of food/shelter during winter
time. Hedgerows represented a relative small proportion
of the total study area (8%), but could be playing an
important role as habitat, probably because of their
structural similarity with the native scrub [62], that
could increase resource availability (e.g. shelter, foraging
areas) [17, 18]. In a study conducted at a similar scale,
Pithon et al. [63] found that only Woodlarks (Lullula
arborea) and Eurasian skylark (Alauda arvensis) were
associated with orchards (vineyards), while the majority
of the species that used agroecosystems were associated
with semi-naturals habitat in French agroecosystems.
Similar results have been reported in California agroeco-
systems, where the tree rows at the edges of alfalfa crops
significantly increased the avian richness [5]. Other stud-
ies support the relevance of isolated trees [64] and
hedgerows as factors that favor bird diversity in agricul-
tural landscapes [65–72]. Here, our findings further
highlight the relevance of shrub hedgerows for bird
communities, documenting the benefits to biodiversity

Fig. 2 Comparison of abundance of individuals and species richness
(± SE) between seasons (N = 111 plots). Different letters represent
significant differences between seasons

Fig. 3 Abundance (± SE) between diet groups between seasons (N = 111 plot stations). Different letters represent significant differences among
each group. Number of species for winter and spring were, respectively, insectivores 6 and 5, granivores-native 7 and 6, granivores-exotic 3 and 3
and omnivores 6 and 7
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of retaining non-crop land cover characteristics in Chilean
agroecosystems.
Native vegetation appears to play a strong role in struc-

turing Chilean bird communities in agricultural lands,
particularly in winter (Fig. 6a). Although native vegetation
was not found to be a significant predictor in our models,
this may be due to the fact that the amount of native vege-
tation in our study area was relatively small (2%). This
likely resulted in some native scrub specialists being
recorded very infrequently. Consequently, based on our
criteria for inclusion in the analysis, we were unable to
analyze these species. In fact, species such as the Chilean
mockingbird (Mimus thenca), Moustached turca (Pterop-
tochos megapodius), Grey-hooded sierra finch (Phrygilus
gayi), Variable hawk (Geranoaetus polyosoma), and
Chilean flicker (Colaptes pitius), were mostly observed in
the plots with some native vegetation cover. Thus, our
results suggest that native vegetation increases the
richness of the species in agricultural landscapes, and thus
can be an especially important to recover to conserve or
restore biodiversity in Chilean agricultural landscapes.

Considering the scarcity of native vegetation embedded
in the studied agricultural landscapes and the relevance of
hedgerows for supporting bird richness, the latter are
clearly playing a key role at larger scales of analysis, open-
ing opportunities for future research within Chilean
agroecosystems. According to ODEPA [73], 83% of farms
in central Chile are smaller than 10 ha, from which we
argue that the proportion of hedgerows and live fences
could be increased by planting native species along the
metal wire fences. In the same way, Fahrig et al. [74]
suggest that diversified small farms provide habitat het-
erogeneity favoring biodiversity, and avoid the impacts
of biotic homogenization associated with large crop
monocultures [75, 76].
In general, our results (Fig. 5) suggest that land covers

at plot scale were more relevant in influencing bird abun-
dance and richness during winter, while these relation-
ships were less clear during spring. A similar study in
French agroecosystems found that smaller scales (110 m
to 330 m radii) better predicted bird presence although
the pattern depended on the species [47]. In tropical

Fig. 4 Relationship between species and land covers and scales during winter (left) and spring (right). Only significant results are showns
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ecosystems, Castaño-Villa et al. [77] found that vegetation
measurements at fine scale (50 m2) influence significantly
insectivore birds. Studies in other organisms (bees)
showed that the importance of the native vegetation pro-
portion as a predictor of bees abundance change accord-
ing different landscape scales [78]. Based on our results,
we suggest future research should evaluate the relevance
of land cover elements at the plot scale as landscape
features for improving connectivity for birds within the
agricultural matrix.

Species associations
Most of the patterns observed for individual species
were consistent with general expectations and previous
observations (e.g. the high association between Southern

lapwings and agricultural crops with low stratification
[79]. Also, the fact that Austral thrushes were abundant
within orchards during both seasons suggests that these
omnivorous species can adapt to dynamic agricultural
habitats, likely taking advantage of resources present
during different seasons (e.g. fruit during spring, and
invertebrates during winter) [80]. Some of these species
may play a beneficial role as predators of insects, in
particular soil insect larvae, potentially helping control
agricultural pests within agroecosystems [4, 5, 81, 82].
Species associated with urban environments, such as

the House sparrow and Eared dove, may also benefit
from the presence of houses and other constructions,
and not require native vegetation. Interestingly, exotic
granivores was the only group that increased slightly
during spring, in contrast to the native birds (Fig. 3).
This should be considered for future studies due to the
potential negative impacts of these exotic birds on
agricultural yields during the growing season [83]. We

Fig. 5 Significant positive and negative effects (GLMMs, p < 0.05) of
land covers affecting birds at different scales in a winter and b spring

Fig. 6 Plot of the first two axes of the canonical correspondence
analysis (CCA) ordination between bird and agricultural land covers
in central Chile in winter a and spring b. Acronyms appear in
Table 2. Land covers at landscape scale are indicated with (L)
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expected to document a clear relationship between gran-
ivorous abundance and percentage cover of low stratified
crops, but our results did not support our hypothesis.
Interestingly, instead, some granivores such as Black-
chinned siskin and Rufous-collared sparrow were mainly
associated with highly stratified crops such as orchards,
although it has been reported that both species can be-
have as facultative, changing their diet according to the
availability of the resources, including insects [84–86].
This could be related with weed plants that were grow-
ing and seeding in the inter row of the orchards, a vari-
able that was not measured in this study, but may be
relevant for future research. This also may be related to
previous research showing that open low stratification
vegetation was not part of the original Chilean matorral
[30, 87, 88]. Additionally, granivores could be positively
related to orchards due to the protection that these areas
offer from predation by birds of prey [60]. In con-
trast, other studies support a preference of granivor-
ous for low stratification crops (e.g. fallow areas) [89]
due to the presence of weeds as seed resources [90].
In our study, this relationship was observed with the
exotic House sparrow in spring, opening the question
of whether habitat preferences vary between exotic
and native granivorous species.
Most of the insectivores analyzed in this study differ in

their feeding behavior, which could account for the lack
of a general pattern of habitat association for this guild.
On the contrary, the lack of such a pattern for omni-
vores was expected. This suggests that other factors may
be more relevant in determining its presence within
agricultural landscapes, such as the soil tillage and
subsequent exposition of soil invertebrates for Southern
lapwing and Chimango caracara [91] or the presence of
berries and other complementary food resources for
Austral thrush [92].
Although our results showed an association between

bird species distribution and agricultural land cover, the
amount of unexplained variation (based on our CCA)
suggests the influence of other important drivers not
considered in this study. Similarly, analysis over larger
landscape scales could be relevant for some species,
depending on their home ranges, but predictions of
which scales may be relevant were limited in our study
due to the lack of literature on the bird communities
and number of species involved. An additional limita-
tion of our study was that all the bird counts were
conducted from roads, potentially limiting the detect-
ability of some species. However, we considered this
factor in the field and we incorporated it as a random
effect in our models (see methods). In spite of these
limitations, we believe that our study presents relevant
information to increase the limited knowledge of
avifauna within Chilean agroecosystems.

Between 2009 and 2015, the total area of low crops in
the study region decreased from 26,763 to 18,404 ha,
while the area of orchards increased from 75,239 to
77,303 ha [93]. Agricultural management practices (e.g.
organic vs conventional) and levels of intensification are
known to influence wildlife [14, 94]. Our results suggest
that this land use change could affect the bird communi-
ties present in these landscapes, and this should be
considered in land use planning within agroecosystems
in the region. Our results in Chile support the findings
of previous literature from elsewhere that changes in
farming systems, via diversification of landscape struc-
tures, could increase the use of these agricultural envi-
ronments by birds. Managing agroecosystems for bird
habitat conservation at the plot scale, by using native
plants in hedgerows, for example, should be included
within a broader management frame in order to benefit
biodiversity at the landscape scale while also favoring
connectivity [95, 96].

Conclusions
Agricultural landscapes provided habitat for an im-
portant number of native birds. The relevance of
agroecosystems for birds changed by season, with in-
creased abundance of birds in winter. Hedgerows, as
non-crop structures, can play a key role as habitat
within these agroecosystems, especially during winter.
These results provide novel information that could be
used for land use management and planning in the
central Chile biodiversity hotspot.
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