Acuña V, Datry T, Marshall J, Barceló D, Dahm CN, Ginebreda A, McGregor G, Sabater S, Tockner K, Palmer MA. Why should we care about temporary waterways? Science. 2014;343(6175):1080–1. https://doi.org/10.1126/science.1246666.
Article
PubMed
Google Scholar
Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos. 1997;79:439–49. https://doi.org/10.2307/3546886.
Article
Google Scholar
Austin AT, Vivanco L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature. 2006;442:555–8. https://doi.org/10.1038/nature05038.
Article
CAS
PubMed
Google Scholar
Austin AT, Yahjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia. 2004;142:221–35.
Article
Google Scholar
Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ. The boundless carbon cycle. Nat Geosci. 2009;2:598–600. https://doi.org/10.1038/ngeo618.
Article
CAS
Google Scholar
Becerra PI. Relationship between climate and geographical variation of local woody species richness within the Mediterranean-type region of Chile. Rev Chil Hist Nat. 2016;89:12. https://doi.org/10.1186/s40693-016-0062-x.
Article
Google Scholar
Benfield EF. Comparison of litterfall input to streams. J N Am Benthol Soc. 1997;16:104–8. https://doi.org/10.2307/1468242.
Article
Google Scholar
Benstead JP, Leigh DS. An expanded role for river networks. Nat Geosci. 2012;5:678–9. https://doi.org/10.1038/ngeo1593.
Article
CAS
Google Scholar
Boyero L, Graça MA, Tonin AM, Pérez J, Swafford AJ, Ferreira V, et al. Riparian plant litter quality increases with latitude. Sci Rep. 2017;7:10562. https://doi.org/10.1038/s41598-017-10640-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boyero L, Pearson RG, Gessner MO, Barmuta LA, Ferreira V, Graça MA, et al. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecol Lett. 2011;14:289–94. https://doi.org/10.1111/j.1461-0248.2010.01578.x.
Article
PubMed
Google Scholar
Bunn SE. Processing of leaf litter in a northern jarrah forest stream, Western Australia: I. seasonal differences. Hydrobiologia. 1988;162:201–10.
Article
CAS
Google Scholar
Bunn SE, Thoms MC, Hamilton SK, Capon SJ. Flow variability in dryland rivers: boom, bust and the bits in between. River Res Appl. 2006;22:179–86. https://doi.org/10.1002/rra.904.
Article
Google Scholar
Campeche E, Pérez M, Nava V, Valencia U, López R, Payan F. Producción de CO2 en el suelo por la adición de mezclas microbianas y residuos de poda de Acacia retinodes (Fabales: Fabaceae). Interciencia. 2018;43(13):836–40.
Google Scholar
Casas-Ruiz JP, Catalán N, Gómez-Gener L, von Schiller D, Obrador B, Kothawala DN, López P, Sabater S, Marcé R. A tale of pipes and reactors: controls on the in-stream dynamics of dissolved organic matter in rivers. Limnol Oceanogr. 2017;62:S85–94. https://doi.org/10.1002/lno.10471.
Article
CAS
Google Scholar
CONAF. Departamento de Monitoreo de Ecosistemas Forestales, Santiago, Chile. Monitoreo de cambios, corrección cartográfica y actualización del catastro de los recursos vegetacionales nativos de la Región del Biobío. Informe Técnico. 2017; 74. Santiago, Chile. https://biblioteca.digital.gob.cl/bitstream/handle/123456789/2336/Informe%20Catastro%20recursos%20vegetacionales%20nativos%2008REG%202017.pdf?sequence=1&isAllowed=y. Accessed 20 Sept 2018.
Connell JH. Diversity in tropical rain forests and coral reefs. Science. 1978;199:1302–10. https://doi.org/10.1126/science.199.4335.1302.
Article
CAS
PubMed
Google Scholar
Coq S, Souquet JM, Meudec E, Cheynier V, Hattenschwiler S. Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology. 2010;91:2080–91. https://doi.org/10.1890/09-1076.1.
Article
PubMed
Google Scholar
Cornwell WK, Cornelissen JH, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O, et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett. 2008;11:1065–71. https://doi.org/10.1111/j.1461-0248.2008.01219.x.
Article
PubMed
Google Scholar
Corti R, Datry T. Invertebrates and sestonic matter in an advancing wetted front travelling down a dry river bed (Albarine, France). Freshw. Sci. 2012;31:1187–201. https://doi.org/10.1899/12-017.1.
Article
Google Scholar
Corti R, Datry T, Drummond L, Larned S. Natural variation in immersion and emersion affects breakdown and invertebrate colonization of leaf litter in a temporary river. Aquat Sci. 2011;73:537–50. https://doi.org/10.1007/s00027-011-0216-5.
Article
Google Scholar
Creed IF, Lane CR, Serran JN, Alexander LC, Basu NB, Calhoun ABJK, et al. Enhancing protection for vulnerable waters. Nat Geosci. 2017;10:809–15. https://doi.org/10.1038/ngeo3041.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cummins KW, Minshall GW, Sedell JR, Cushing CE, Petersen RC. Stream ecosystem theory. Verh Int Ver Limnol. 1984;22:1818–27.
Google Scholar
Cummins KW, Spengler GL, Ward GM, Speaker RM, Ovink RW, Mahan DC. Processing of confined and naturally entrained leaf litter in a woodland stream ecosystem. Limnol Oceanogr. 1980;25:952–7. https://doi.org/10.4319/lo.1980.25.5.0952.
Article
Google Scholar
Datry T, Corti R, Foulquier A, von Schiller D, Tockner T. One for all, all for one: a global river research network. Eos. 2016;97:13–5. https://doi.org/10.1029/2016EO053587.
Article
Google Scholar
Datry T, Foulquier A, Corti R, von Schiller D, Tockner K, Mendoza-Lera C, et al. A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nat Geosci. 2018;11:497–503. https://doi.org/10.1038/s41561-018-0134-4.
Article
CAS
Google Scholar
Datry T, Larned ST, Tockner K. Intermittent rivers: a challenge for freshwater ecology. BioScience. 2014;64:229–35. https://doi.org/10.1093/biosci/bit027.
Article
Google Scholar
Dayton PK. Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol Monogr. 1971;41:351–89. https://doi.org/10.2307/1948498.
Article
Google Scholar
Dickinson JL, Bonney R, Fitzpatrick JW. Overview of Citizen Science. (Eds.), Citizen science: public participation in environmental research. Ithaca: Comstock; 2015.
Chilean General Water Directorate. Meteorological database. http://snia.dga.cl/BNAConsultas/reportes. Accessed 30 april 2019.
Duissaillant A. Hidrología de la cuenca del río Itata. In: Parra, O., Castilla. J.C., Romero, H., Quiñones, R., Camaño, A. (eds.). La cuenca hidrográfica del río Itata: aportes científicos para su gestión. Ediciones Universidad de Concepción; 2009; p. 27–43.
Flecker AS, Feifareck B. Disturbance and the temporal variability of invertebrate assemblages in two Andean streams. Freshw Biol. 1994;31(2):131–42. https://doi.org/10.1111/j.1365-2427.1994.tb00847.x.
Article
Google Scholar
Foulquier A, Artigas J, Pesce S, Datry T. Drying responses of microbial litter decomposition and associated fungal and bacterial communities are not affected by emersion frequency. Freshw Sci. 2015;34:1233–44. https://doi.org/10.1086/682060.
Article
Google Scholar
Garfias R, Castillo M, Ruiz F, Vita A, Bown H, Navarro R. Remanentes del bosque esclerófilo en la zona Mediterránea de Chile central; caracterización y distribución de fragmentos. Interciencia. 2018;43(9):655–63.
Google Scholar
Gasith A, Resh VH. Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Syst. 1999;30:51–81. https://doi.org/10.1146/annurev.ecolsys.30.1.51.
Article
Google Scholar
Gessner MO, Chauvet E, Dobson M. A perspective on leaf litter breakdown in streams. Oikos. 1999;85:377–84. https://doi.org/10.2307/3546505.
Article
Google Scholar
Gholz H, Wedin D, Smitherman SM, Harmon ME, Parton WJ. Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Chang Biol. 2000;6:751–65. https://doi.org/10.1046/j.1365-2486.2000.00349.x.
Article
Google Scholar
Gleick PH. Global freshwater resources: soft-path solutions for the 21st century. Science. 2003;302(5650):1524–8. https://doi.org/10.1126/science.1089967.
Article
CAS
PubMed
Google Scholar
González L, Acosta M, Carrillo F, Rueda A. Simulación de los cambios de carbono orgánico del suelo en especies tropicales con el modelo ROTHC 26.3. Interciencia. 2018;43(4):268–74.
Google Scholar
Graça M, Ferreira V, Canhoto C, Encalada A, Guerrero-Bolaño F, Wantzen K, Boyero L. A conceptual model of litter breakdown in low order streams. Int Rev Hydrobiol. 2015;100:1–12. https://doi.org/10.1002/iroh.201401757.
Article
CAS
Google Scholar
Hasler CT, Butman D, Jeffrey JD, Suski CD. Freshwater biota and rising pCO2? Ecol Lett. 2016;19(1):98–108. https://doi.org/10.1111/ele.12549.
Article
PubMed
Google Scholar
Hernández A, Miranda M, Arellano E, Dobbs C. Landscape trajectories and their effect on fragmentation for a Mediterranean semi-arid ecosystem in Central Chile. J Arid Environ. 2016;127:74–81. https://doi.org/10.1016/j.jaridenv.2015.10.004.
Article
Google Scholar
Hladyz S, Watkins SC, Whitworth KL, Baldwin DS. Flows and hypoxic Blackwater events in managed ephemeral river channels. J Hydrol. 2011;401:117–25. https://doi.org/10.1016/j.jhydrol.2011.02.014.
Article
CAS
Google Scholar
Hoover TM, Richardson JS, Yonemitsu N. Flow-substrate interactions create and mediate leaf litter resource patches in streams. Freshw Biol. 2006;51:435–47. https://doi.org/10.1111/j.1365-2427.2005.01499.x.
Article
Google Scholar
IPCC. Climate change 2014: impacts, adaptation, and vulnerability. Cambridge: Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2014.
Google Scholar
Jaeger KL, Olden JD, Pelland NA. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc Natl Acad Sci U S A. 2014;111:13894–9. https://doi.org/10.1073/pnas.1320890111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keskitalo J, Bergquist G, Gardeström P, Jansson S. A cellular timetable of autumn senescence. Plant Physiol. 2005;139:1635–48. https://doi.org/10.1104/pp.105.066845.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lamberti GA, Entrekin SA, Griffiths NA, Tiegs SD. Coarse particulate organic matter: storage, transport, and retention. In: Lamberti GA, Hauer FR, editors. Methods in stream ecology: volume 2: ecosystem function. Elsevier, academic press; 2017. p. 55–69.
Google Scholar
Larned ST, Datry T, Arscott DB, Tockner K. Emerging concepts in temporary-river ecology. Freshw Biol. 2010;55:717–38. https://doi.org/10.1111/j.1365-2427.2009.02322.x.
Article
Google Scholar
Lite SJ, Stromberg J. Surface water and ground-water thresholds for maintaining Populus-Salix forests, San Pedro River, Arizona. Biol Conserv. 2005;125(2):153–67. https://doi.org/10.1016/j.biocon.2005.01.020.
Article
Google Scholar
Maamri A, Chergui H, Pattee E. Allochthonous input of coarse particulate organic matter to a Moroccan mountain stream. Acta Oecol. 1994;15:495–508. https://doi.org/10.1051/limn/1994024.
Article
Google Scholar
Marchin R, Zeng H, Hoffmann W. Droughtdeciduous behavior reduces nutrient losses from temperate deciduous trees under severe drought. Oecologia. 2010;163:845–54. https://doi.org/10.1007/s00442-010-1614-4.
Article
PubMed
Google Scholar
Molinero J, Pozo J, Gonzalez E. Litter breakdown in streams of the Agüera catchment: influence of dissolved nutrients and land use. Freshw Biol. 1996;36:745–56. https://doi.org/10.1046/j.1365-2427.1996.00125.x.
Article
Google Scholar
Nadeau TL, Rains MC. Hydrological connectivity between headwater streams and downstream waters: how science can inform policy. Hydrol Process. 2007;43:118–33. https://doi.org/10.1111/j.1752-1688.2007.00010.x.
Article
Google Scholar
Naiman RJ, Décamps H. The ecology of interfaces: riparian zones. Annu Rev Ecol Syst. 1997;28:621–58. https://doi.org/10.1146/annurev.ecolsys.28.1.621.
Article
Google Scholar
Obermann M, Rosenwinkel KH, Tournoud MG. Investigation of first flushes in a medium-sized Mediterranean catchment. J Hydrol. 2009;373:405–15. https://doi.org/10.1016/j.jhydrol.2009.04.038.
Article
CAS
Google Scholar
Pettit NE, Latterell JJ, Naiman RJ. Formation, distribution and ecological consequences of flood-related wood debris piles in a bedrock confined river in semiarid South Africa. River Res Applic. 2006;22:1097–110. https://doi.org/10.1002/rra.959.
Article
Google Scholar
Phillips T, Boney R, Shirk J. What is our impact?: toward a unified framework for evaluating outcomes of citizen science participation. In; Bonney JL, Fitzpatrick JW. (Eds.), citizen science: public participation in environmental research. Ithaca: Comstock; 2015.
Pozo J, Gonzalez E, Diez JR, Molinero J, Elosegui A. Inputs of particulate organic matter to streams with different riparian vegetation. J N Am Benthol Soc. 1997;16:602–11. https://doi.org/10.2307/1468147.
Article
Google Scholar
Prat N, González G, Millet X. Comparación crítica de dos índices de calidad del agua. ISQA y BILL. Artículos técnicos, vol. 31; 1986. p. 33–49.
Google Scholar
Prenafeta S. La comunicación de la ciencia en Chile, Santiago: Conicyt. Chile; 2008.
Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, et al. Global carbon dioxide emissions from inland waters. Nature. 2013;503:355–9. https://doi.org/10.1038/nature12760.
Article
CAS
PubMed
Google Scholar
Raymond PA, Saiers JE, Sobczak WV. Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept. Ecology. 2016;97:5–16. https://doi.org/10.1890/14-1684.1S.
Article
PubMed
Google Scholar
Richardson JS, Hoover TM, Lecerf A. Coarse particulate organic matter dynamics in small streams: towards linking function to physical structure. Freshw Biol. 2009;54:2116–26. https://doi.org/10.1111/j.1365-2427.2009.02279.x.
Article
CAS
Google Scholar
Rosado J, Morais M, Tockner K. Mass dispersal of terrestrial organisms during first flush events in a temporary stream. River Res Appl. 2015;31:912–7. https://doi.org/10.1002/rra.2791.
Article
Google Scholar
Salinas N, Malhi Y, Meir P, Silman M, Roman C, Huaman J, et al. The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytol. 2011;189:967–77. https://doi.org/10.1111/j.1469-8137.2010.03521.x.
Article
CAS
PubMed
Google Scholar
Sanpera-Calbet I, Acuña V, Butturini A, Marcé R, Muñoz I. El Niño southern oscillation and seasonal drought drive riparian input dynamics in a Mediterranean stream. Limnol Oceanogr. 2016;61:214–26. https://doi.org/10.1002/lno.10211.
Article
Google Scholar
Shafroth P, Stromberg J, Patten D. Woody riparian vegetation response to different alluvial water table regimes. Western North American Naturalist. 2000;60(1):66–76.
Google Scholar
Shah JJ, Dahm CN. Flood regime and leaf fall determine soil inorganic nitrogen dynamics in semiarid riparian forests. Ecol Appl. 2008;18:771–88. https://doi.org/10.1890/07-0447.1.
Article
PubMed
Google Scholar
Shumilova O, Zak D, Datry T, von Schiller D, Corti R, Foulquier A, et al. Simulating rewetting events in intermittent rivers and ephemeral streams: A global analysis of leached nutrients and organic matter. Glob Change Biol. 2019:1–21. https://doi.org/10.1111/gcb.14537.
Article
Google Scholar
Sponseller RA. Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem. Glob Chang Biol. 2007;13:426–36. https://doi.org/10.1111/j.1365-2486.2006.01307.x.
Article
Google Scholar
Stehr A, Debels P, Arumí JL, Alcayaga H, Romero F. Modelación de la respuesta hidrológica al cambio climático: experiencias de dos cuencas de la zona centro-sur de Chile. Tecnología y. Ciencias del Agua. 2010;1(4):37–58.
Google Scholar
Stout J. Effects of condensed tannins on leaf processing inmid-latitude and tropical streams: a teoretical approach. CanJ Fish Aquat Sci. 1989;46:1097–106. https://doi.org/10.1139/f89-142.
Article
CAS
Google Scholar
Tejeda I, Medrano F. El potencial de la ciencia ciudadana para el estudio de las aves urbanas en Chile. Revista Diseño Urbano & Paisaje. 2018;33:59–66.
Google Scholar
Tiegs SD, Costello DM, Isken MW, Woodward G, McIntyre PB, Gessner MO, et al. Global patterns and drivers of ecosystem functioning in rivers and riparian zones. Sci Adv. 2019;5:eaav0486. https://doi.org/10.1126/sciadv.aav0486.
Article
PubMed
PubMed Central
Google Scholar
Tzoraki O, Nikolaidis NP, Amaxidis Y, Skoulikidis NT. Instream biogeochemical processes of a temporary river. Environ Sci Technol. 2007;41:1225–31. https://doi.org/10.1021/es062193h.
Article
CAS
PubMed
Google Scholar
Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE. The river continuum concept. Can J Fish Aquat Sci. 1980;37(1):130–7. https://doi.org/10.1139/f80-017.
Article
Google Scholar
Vicuña S, McPhee J, Garreaud RD. Agriculture vulnerability to climate change in a snowmelt-driven basin in semiarid Chile. J Water Resour Plan Manag. 2012;138:431–41. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000202.
Article
Google Scholar
Villarroel P, Valenzuela V, Vergara G, Sepúlveda C. Comprensión pública de la ciencia en Chile: adaptación de instrumentos y medición. Convergencia Revista de Ciencias Sociales. 2013;20(63):13–40.
Google Scholar
Webster JR, Meyer JL. Organic matter budgets for streams: a synthesis. J N Am Benthol Soc. 1997;16:141–61. https://doi.org/10.2307/1468247.
Article
Google Scholar
Yevenes M, Figueroa R, Parra O. Seasonal drought effects on the water quality of the Biobío River, Central Chile. Environ Sci Pollut Res. 2018;25(14):13844–56. https://doi.org/10.1007/s11356-018-1415-6.
Article
CAS
Google Scholar