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Abstract

Background: Prevailing environmental conditions can modulate the structuring role of biotic interactions. In
intertidal habitats, less stressful environmental conditions and/or higher grazer densities may allow grazing effects
to be stronger in tide pools than on emergent rocks. To test this hypothesis, we conducted a manipulative
experiment on an intertidal rocky shore in Fildes Bay, King George Island, in which the effect of the dominant
grazer Nacella polaris on the structure of benthic periphyton communities was compared between emergent rock
and tide pool habitats. Also, we determined the spatial variation in density, weight, and maximum length of
individuals of N. polaris in both habitats.

Results: The density of N. polaris was significantly larger in tide pools than on emergent rocks. Contrarily, we
observed no significant differences in morphological parameters of N. polaris between both habitats or between
intertidal elevations. In the manipulative study, we observed a greater taxonomic richness, diversity, and abundance
of periphyton on emergent rocks than in tide pools. These variables also showed, in comparison with control areas,
significantly higher values in experimental areas where herbivores were excluded by means of stainless-steel fences.
The effects of habitat and grazer exclusion treatments were independent of each other, as no statistically significant
interaction between both factors was observed.

Conclusions: Our results showed significant, but independent, effects of tide pool habitats and grazing on the
early colonisation of these assemblages. Albeit the grazing effects of other herbivores such as amphipods and small
gastropods cannot be ruled out, we suggest that traits of N. polaris, such as high mobility and circadian activity,
allow this species to exert a firm control on the intertidal Antarctic assemblages across local environmental
conditions.
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Background
The interplay between biotic interactions and environ-
mental factors is gaining higher relevance in basic and
applied ecology, due to the rapid environmental changes
that can be observed worldwide (e.g. [1]). The Antarctic
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ecosystems are showing the world’s fastest responses to
climate change, but the study of biotic interactions in
these habitats has lagged behind other ecosystems [2].
The Antarctic intertidal habitats are constantly exposed
to disturbances, such as ice scour, and wide fluctuations
in temperature [3, 4]. In general, the availability of mi-
crohabitats with more benign environmental conditions,
like shelters, might offer an opportunity to a number of
species to establish in harsh environments, as shown in
temperate regions [5, 6]. Accordingly, biotic interactions
like competition, predation, and herbivory can be
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Fig. 1 Study site in NE Fildes Bay, King George Island, Antarctica.
The photo was taken during low tide. The dominant macroalgal
species around the tide pool in the centre of the picture is
Adenocystis utricularis (brown alga). Photo credit: Lilian Villanueva
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intensified in these microhabitats [7]. The analysis of the
effects of biotic interactions on community structure
across environmental conditions in Antarctica can be
helpful to inform predictive models on how these fragile
ecosystems will change in the near future.
Herbivory is defined as the effects that animals cause

on populations and communities of plants, and is con-
sidered one of the most important ecological processes
in marine and terrestrial environments [8–12]. In marine
systems, herbivores can determine the spatial and tem-
poral distribution of algae in both intertidal and subtidal
habitats, as they can also affect the succession of entire
benthic communities [8]. Theoretical models predict
that the effects of herbivory and other interactions heav-
ily depend on prevailing environmental stress levels, and
it is expected that consumer activity of predators and
herbivores should decrease when they are subjected to
high environmental stress [7, 13]. In intertidal systems,
which are generally characterised by prevailing harsh
conditions for marine organisms due to exposure to at-
mospheric conditions, habitat heterogeneity in terms of
crevices and tide pools provides ameliorated environ-
mental conditions and shelter for a suite of organisms
[14]. Accordingly, intertidal herbivores have been shown
to have significant effects on the structure of tide pool
communities, especially by controlling the abundance of
fast-growing, nutrient-limited macroalgae (e.g. [14–16]).
Along intertidal and shallow subtidal Antarctic shores,

the gastropod Nacella polaris (hereafter referred to as
Nacella) is likely the most abundant grazer in terms of
biomass on the Antarctic Peninsula and adjacent islands
[17]. This herbivore is adapted to conditions of low tem-
peratures and even freezing to which is exposed during
winter [18]. In the Antarctic coast, the populations of
Nacella are divided into a fraction that remains sub-
merged in the subtidal habitat and another that migrates
during summer months to the intertidal habitat [19, 20].
The seasonal migration of Nacella matches the re-
colonisation of the intertidal zone by algal assemblages
after ice retreat [21]. Therefore, it is likely that the mi-
gration activity of Nacella species is related with a
higher resource availability and lower exploitation com-
petition in the intertidal zone during the austral
summer.
In Antarctic shores and elsewhere, the re-colonisation

of the intertidal zone begins with the arrival of benthic
microalgae (e.g. diatoms and cyanophytes) and macroal-
gal spores; these early colonists are collectively called
periphyton [22]. Periphyton is one of the main sources
of food for benthic herbivores and in many cases is crit-
ical for the establishment of benthic macroalgae [23].
Grazing often has negative effects on the biomass ac-
crual and productivity of this group [24]. In Antarctic
coast, intertidal Nacella feeds on periphyton that is
mainly comprised by microalgae and small filamentous
algae [17]. Although herbivores play an important role
in determining algal composition and biomass in inter-
tidal pools elsewhere [11, 14, 25], there has been little at-
tention to the grazing activity on different intertidal
habitats on western Antarctic Peninsula (but see [26]).
In this work, we test the hypothesis that less stressful

environmental conditions and/or higher grazer densities
may result in that grazing effects are intensified in tide
pools, which has significant consequences for the re-
colonisation of benthic communities. From this hypoth-
esis, we deduced the predictions that (1) tide pools
should harbour higher densities and larger individuals of
the herbivore Nacella, and (2) that the grazing effect of
Nacella on the dynamic of periphyton communities is
stronger in tide pools than on emergent rocks. The
study was conducted on an intertidal rocky shore at
Fildes Bay, King George Island, Antarctica. The informa-
tion of biotic interactions across environmental condi-
tions could be helpful to understand the processes
structuring the natural communities in dynamic envi-
ronments such as the Antarctic intertidal habitat.

Methods
Study sites and model species
The study was conducted on an intertidal rocky shore
located northeast of Fildes Bay, King George Island
(62.18 S, 58.88 W; Fig. 1), and took place between De-
cember 2013 and February 2014; in situ observations
and samplings were conducted during diurnal low-tide
periods. Tide pools in the study site are of ca. eight me-
ters long, showing temperatures and salinity values ran-
ging between 9.3 and 11.2 ° C and 34 and 35 psu,
respectively.
The study area is characterised by red macroalgae such

as Iridaea cordata and crustose algae, which are found
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mainly in tide pools; Adenocystis utricularis, brown sea-
weed that is mainly distributed on emergent rock and
mid-high intertidal elevations; and the filamentous algae
Urospora penicilliformis and Ulothrix sp., which occur in
higher abundance in emergent rock habitats (Additional
file 1: Figure S1). The assemblage of invertebrate species
is dominated by Nacella, followed by the small-sized lit-
torinid snails Laevilittorina antarctica and Laevilacu-
naria umbilicata.
The study consisted of two parts, an observational

study and a manipulative experiment. In the observa-
tional study we determined the spatial patterns of occur-
rence and body size of Nacella as functions of shelter
availability (i.e. emergent rock vs. tide pools) and inter-
tidal elevations (i.e. mid- and low intertidal zones). In
the manipulative experiment we tested the interactive ef-
fect of grazer removal and tide pool habitats on the dy-
namics of periphyton communities.
Tidal elevation was determined by using the green alga

Ulothrix sp. and the red alga Pyropia endiviifolia, as in-
dicators of the upper limit of the intertidal zone [27].
The low limit of the intertidal zone was defined accord-
ing to chart datum. Once the upper boundary was deter-
mined on the shore, we divided the intertidal range in
three zones of equal vertical extent (high, mid-, and low
zones). Samplings of Nacella were restricted to the mid-
and low intertidal zones, because of the lack of individ-
uals at higher elevations.

Observational study
For each intertidal height (i.e. mid- and low intertidal
zones), ten individuals were collected from haphazardly
selected tidal pools and ten from emerging rocks. The
organisms were labelled and transported to the labora-
tory at the Base Antártica Julio Escudero (INACH),
where wet weight (0.001 g precision) and maximum
shell length (0.01 mm precision) were determined.
Density of Nacella was quantified in a 12-m along-

shore transect placed in the mid-intertidal zone. The
number of Nacella individuals was quantified in 0.25 ×
0.25 m quadrats placed every 0.5 m along the transect.
Also, the percentage cover of tide pools in each quadrat
was estimated.

Manipulative experiment
Experimental design and setup
We used a randomized block design to distribute a 2 × 3
factorial experiment with “habitat” (two levels: tide pool
or emergent rock) and “treatment” (three levels: total ex-
clusion, control, and procedural control) as fixed and
crossed factors. In the study site, we haphazardly located
four blocks. In each block, we haphazardly selected a
tide pool and an area of emergent rock (ca. 1 m2). In
each tide pool and emergent rock area, we haphazardly
located three areas of 0.20 × 0.20 m. The small size of
the experimental area (i.e. experimental unit) was chosen
to minimise the impact on the natural assemblages. Each
area was randomly assigned to one of the following three
treatments: (1) total exclusion (TE), in which a stainless-
steel fence of 20 × 20 × 8 cm (width, length, and height)
was fixed to the rock with stainless screws to exclude
grazers; (2) control (C), in which the area was delimited
with screws in order to allow the access to grazers; and
(3) procedural control (PC), in which the experimental
area was fenced on two sides in order to allow grazers to
access the plot, and at the same time, to generate the
potential effects of fencing on confounding factors
(Fig. 2). Before installing fences, each plot was scraped
with a paint scraper and a steel brush in order to remove
macroalgae and mobile invertebrates. Crustose algae
were not removed due to logistical constraints.
In the centre of each treatment, we fixed to the sub-

strate with a stainless screw a 10 × 10 cm polyvinyl
chloride (PVC) plate. On top of this plate, we used Vel-
cro (TM) to fix a set of four small plates of equal size
(“sub-plates” hereafter). The surface of each sub-plate
was roughened (grain size 60) in order to benefit the
settlement of periphyton. In addition, the edges of plates
and sub-plates were grinded in order to form a ramp
that allowed the grazers to access the plates. Each sub-
plate was replaced every ten days, after completing four
sampling times.

Sampling
In the laboratory at Base Antártica Julio Escudero, set-
tled periphyton was extracted from each sub-plate by
means of 4 % formalin and a sterilised tooth brush [23].
The sub-plate was hydrated with 0.5 ml of 4 % formalin,
and then the periphyton was extracted by gently scrap-
ing with horizontal, vertical, and circular movements the
surface of the sub-plate with the brush. This procedure
was repeated three times for each sub-plate. A dropper
was used to drip onto the plate additional 0.5 ml of 4 %
formalin, and then to transfer the material to a 10 ml
flask. The samples were subsequently transferred to the
Laboratorio de Ecología Litoral, UACH (Valdivia), for
further processing.
Periphyton samples (10 μl) were poured on a Neu-

bauer chamber and observed under an epifluoresence
microscope (60x). Periphyton taxa were identified to the
lowest level possible (genus) on the basis of morpho-
logical characteristics. The identification was made using
taxonomic descriptions [28–32]. We used species
(genus)-accumulation curves to determine the minimum
number of sub-samples for each sub-plate—the number
of taxa stabilised at four sub-samples. Each periphyton
taxon was quantified in one sector of the Neubauer
camera and then algal concentration was calculated as:
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Fig. 2 Experimental setup. Control, procedural control, and herbivore total exclusion treatments were deployed in tide pools (panels a) and on
emergent rocks (panels b)
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Algal concentration (cells ml-1) = (Total cells counted in
sector × 10,000)/number of sectors. Taxon richness (i.e.
the number of genus in each experimental unit) and di-
versity were then calculated from the genus abundance
data. Diversity was expressed as the Shannon’ diversity
index H, which combines taxon richness the relative
abundance of taxonomic identities. A higher value of the
index indicates a greater taxonomic diversity.

Statistical analyses
Nacella’ body weights (g) and lengths (cm) were ana-
lysed separately using two-way Analyses of Variance
(ANOVA) in the R environment v. 3.1.2 [33]. The ana-
lysis included intertidal zone (either mid- or low zone)
and habitat (either emergent rock or tide pool) as
crossed and fixed factors. The assumptions of homogen-
eity of variances were tested through Levene’s tests. In
addition, we assessed the correlation between Nacella’
density and the percentage cover of tide pools by means
of a Cross Correlation Function (CCF) analysis in R. In
this way, we were able to analyse the spatial structure of
Nacella as a function of the availability of tide pools.
For periphyton taxonomic richness and diversity, we

separately calculated the area under the curve (AUC) of
the relationship between each dependent variable (y-
axis) with time (x-axis). In this way, we integrated each
dependent variable over time, avoiding the problems of
autocorrelation in the repeated measures. In addition,
this transformation allowed us to describe and compare
among experimental groups the temporal patterns in
species colonisation. For example, and since all plots
started from a clean surface, larger AUCs indicated fas-
ter re-colonisation patterns. Then, we used a mixed-
model ANOVA to determine the separate and inter-
active effects of treatments (fixed factor with three
levels: TE, C, or PC), habitat (fixed factor; either emer-
gent rock or tide pool), and block (random factor) on
the temporal trajectories of taxon richness and diversity.
A significant interaction between grazer treatment and
habitat would be seen as evidence supporting our pre-
diction that the effects of herbivory are stronger in tide
pools than emergent rocks. A Student-Newman-Keuls
(SNK) post hoc analysis was used for the treatment fac-
tor in order to contrast the exclusion (TE) and control
(C) treatments, as well as to determine whether there
was an artefact effect of fences (i.e. C vs. PC treatments).
A non-multidimensional metric scaling (MDS), based

on Bray-Curtis dissimilarities, was used to display multi-
variate patterns of abundances of periphyton. In
addition, we tested the effects of treatment, habitat, and
block on the multivariate structure of periphyton by
means of permutational analysis of variance (PERMA-
NOVA) based on Bray-Curtis dissimilarities calculated
from the AUC matrix. Finally, an analysis of percentage
similarity (SIMPER) for treatment and habitat was per-
formed to determine the relative contribution of taxa to
the differences between groups. Multivariate analyses
were performed in PRIMER with PERMANOVA soft-
ware v. 6 [34,35]. All null-hypothesis significance tests
were performed with α = 0.05.

Results
Observational study
Maximum shell length and wet weight of Nacella ranged
from 1.5 to 4.6 cm and 0.5 to 12.8 g, respectively. Body
lengths (Fig. 3a) and weights (Fig. 3b) showed similar
values between habitats (i.e. tide pools or emergent
rocks) and intertidal zones (i.e. low or mid-intertidal
zones). Accordingly, the 2-way ANOVA showed no sig-
nificant effect of habitat and intertidal zone on both
body-size variables (P > 0.05).
On the other hand, Nacella densities ranged from 0 to

32 ind. m-2 and 0 to 176 ind. m-2 on emergent rocks and
in tide pools, respectively. Mean density values were ca.
2 ind. m-2 and ca. 42 ind. m-2 on emergent rocks and in
tide pools, respectively. The CCF analysis showed a
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Fig. 3 Morphological parameter and density Nacella. Nacella maximum body length (a) and body weight (b) of Nacella were measured in tide
pools and on emergent rocks (dark- and light-grey bars, respectively). In panels a and b, values are given as means ± standard errors of the mean
(SEM). Panel c shows the cross-correlation between the percentage cover of tide pools (x) and density of Nacella (y) in the mid-intertidal zone. In
panel c, the height of each bar indicates the correlation estimate at multiple spatial lags between both variables; dotted lines delimit the thresh-
old for statistical significance (CI 95 %) of correlations

Table 1 Periphyton occurrence. Order in which benthic
microalgae and macroalgal propagules occurred on settlement
plates during the experiment

Taxon/Days after start 10 20 30 40

Licmophora x x x x

Cocconeis x x x x

Fragilaria x x x x

Actinocyclus x x x x

Navicula x x x x

Grammatophora x x x x

Nitzschia x x x

Amphora x x

Ulothrix x x

Palmaria x

Adenocystis x
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significant and positive correlation between the percent-
age of cover of tide pools and Nacella’ density at lag 0,
indicating a strong “instantaneous” correlation between
both variables (Fig. 3c); that is, the density of Nacella
was higher in areas with larger tide pool covers.

Manipulative experiment
We identified a total of eight periphyton taxa (Table 1).
Licmophora, Cocconeis, Fragilaria, Actinocyclus, Navi-
cula, and Grammtophora were the first taxa to colonise
the settlement panels after ten days of exposure (Table 1).
Nitzschia and Amphora colonised the plates after 20
days of colonisation. Recruits of the macroalgae Pal-
maria (red) and Adenocystis utricularis (brown) were
observed after 40 days of exposure to colonisation
(Table 1).
Taxon richness peaked after 20 days of colonisation of

plates; this peak was lower in tide pools than on emer-
gent rocks (compare Fig. 4a and b). In average, diversity
showed an overall decrease after 30 days and a further
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increase after 40 days of colonisation (Fig. 4c and d). Ex-
clusion treatment and habitat showed significant and in-
dependent effects on taxonomic richness and diversity;
block accounted for a significant amount of variation in
taxon richness (Table 2). Both, control (C) and proced-
ural control (PC) treatments showed significantly lower
number of taxa and diversity than the TE treatment
(Fig. 4, SNK test: P < 0.05). The differences between the
C and PC treatments were statistically non-significant
for taxonomic richness and diversity (Fig. 4, SNK: P >
Table 2 Summary of effects of habitat (either tide pool or emergen
procedural control), and randomly selected blocks on the temporal
structure of periphyton rocky-shore communities

Source d.f. Taxon richness

F P

Habitat = H 1 10.501 0.005

Treatment = T 2 6.090 0.010

Block 3 17.240 0.039

H x T 2 0.991 0.400

Residual 15

Taxon richness and Shannon’s diversity were analysed with ANOVA; community stru
0.05), indicating that confounding effects of fences on
the colonisation patterns can be discarded. Taxonomic
richness and diversity were significantly lower in tide
pools than on emergent rocks (Fig. 4, Table 2).
The MDS ordination showed that experimental units

located in tide pools and on emergent rock were well
discriminated in terms of Bray-Curtis dissimilarities
(Fig. 5). Within these two groups, the TE treatment clus-
tered in the centre of the ordination, while the C and PC
treatments clustered toward the left side (Fig. 5). In
t rock), grazing treatment (total exclusion, control, and
patterns of taxonomic richness, Shannon’s diversity, and the

Shannon’s diversity Community structure

F P pseudo F P (perm)

7.252 0.017 19.257 0.001

7.795 0.005 10.693 0.001

16.531 0.051 6.879 0.001

0.319 0.731 1.396 0.252

cture was analysed with PERMANOVA, based on Bray-Curtis dissimilarities
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agreement with the univariate analyses (see previous
paragraph), the PERMANOVA showed significant re-
sponses in community structure to exclusion treatment,
habitat, and block, but not to the interaction between
habitat and treatments (Table 2). Pairwise multivariate
analyses conducted between exclusion treatments
showed that the differences between treatments C and
PC were statistically non-significant; both control treat-
ments were statistically different from the TE treatment.
According to similarity percentage (SIMPER) analyses,

the 92 % of the multivariate differences between tide
pools and emergent rocks were accounted for by the
genera Navicula, Licmophora, Fragilaria, and Cocconeis.
For grazer exclusion treatments, the differences between
TE and C treatments were accounted for by the genera
cited above in addition with Actinocyclus, which together
accounted for 94.8 % of the average between-group dis-
similarity. For these taxa, we observed higher abun-
dances on emergent rocks than in tide pools, and in TE
than C and CP treatments.

Discussion
These results suggest that intertidal tide pool habitats
and grazing by the gastropod Nacella polaris (hereafter
referred to as Nacella) had significant, albeit independ-
ent, effects on the structure of early-succession periph-
yton communities in a rocky shore on the western
Antarctic Peninsula. Individuals of Nacella were found
in higher densities in tide pools than on emergent rocks
exposed to aerial conditions. Despite these spatial pat-
terns of distribution, body sizes and weights remained
similar across microhabitats. In addition, herbivore-
exclusion treatments had positive effects on the richness,
diversity, and abundances of periphyton taxa, in
agreement with previous manipulative work conducted
in western Antarctic Peninsula [21, 36]. Also, there was
a higher richness and diversity of periphyton taxa occur-
ring on emergent rock than in tide pools. Finally, no sig-
nificant response of periphyton community structure
and diversity to the interactive effect of grazer treat-
ments and habitat was observed. Below we discuss these
results in the light of what is known about (1) the high
mobility of Nacella, (2) the circadian activity of this spe-
cies, and (3) the potential effect of other grazers on
intertidal community structure on western Antarctic
Peninsula.
In this study we observed higher abundances of

Nacella, but similar body sizes and shell morphologies,
when tide pools were compared with emergent rocks.
The comparatively high mobility of this species might
explain these patterns. For instance, studies on Signy Is-
land described two Nacella groups: a group that mi-
grates from the subtidal to the intertidal zone during the
summer and a group that remain submerged. These two
groups are distinguished by the morphology of the shell
[19, 20]. Individuals larger than 20 mm primarily
undergo vertical migration, probably as a method to pre-
vent intraspecific competition in the subtidal zone [37].
In agreement with these patterns, significant differences
in shell morphology between intertidal and subtidal
Nacella have been described in King George Island [21].
Accordingly, the limpets analysed in our study—which
was restricted to intertidal measurements—shared simi-
lar morphological conditions and body-size ranges. On
the other hand, their comparatively high capacity to dis-
perse at the local scale, reflected by vertical migrations,
might allow Nacella individuals to move from benign
(i.e. tide pools and crevices) to more adverse (i.e.
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emergent rocks) environments in order to allocate food.
Subtidal and intertidal Antarctic limpets move 50 and
17 cm a day, respectively (Kim), which can be consid-
ered relatively high if compared with limpets from tem-
perate regions (e.g. [38]). Further observational and
manipulative research in this region should focus on be-
havioural aspects of Nacella, including homing behav-
iour and circadian rhythms.
Despite that densities of Nacella were highest in tide

pools, the grazing effects of this species on periphyton
did not vary between microhabitats. Logistic constraints
limited our observations to low tide and daylight hours,
so we did not account for distributional patterns of
Nacella during high tide and night. Herbivores can have
differential activity during day and night, as shown in
temperate regions [38]. For instance, in central Chile the
pulmonate gastropod Siphonaria lessoni is characterised
by diurnal activity, while larger herbivores such as Chi-
ton granosus and Fissurella crassa by nocturnal activity
[38]. In addition, predation risk can stimulate nocturnal
activity in prey species. In Antarctica the kelp gull Larus
dominicanus predominantly feeds in shallow water at
low tide and daytime, and the number of seagulls look-
ing for prey significantly increases as the extreme low
tide approaches [39, 40]. Therefore, it might be hypothe-
sised that Nacella shows differential day vs. night activity
patterns, which might allow this species to forage on
emergent rocks when predation risk is low.
We also observed a higher diversity and abundance of

periphyton on emergent rocks than tide pools, irrespec-
tively of the presence or absence of Nacella. Tide pools
in the intertidal zone of the Antarctic Peninsula harbour,
in addition to Nacella, an abundant assemblage of ben-
thic grazing species. Amphipods that feed on periphyton
are abundant in the Antarctic intertidal [41–43], and
were numerous in tide pools at the experimental loca-
tion of this study (V. Segovia-Rivera and N. Valdivia,
pers. observations). Interesting, we observed a lower per-
centage cover of filamentous algae in tide pools than
emergent rock (see Additional file 1: Figure S1). In shal-
low subtidal habitats in the Antarctic Peninsula, more-
over, amphipod densities can reach more than 300,000
ind. m-2, which are several orders of magnitude higher
than densities recorded elsewhere [44]. Such assem-
blages show specific habitat-selection behaviours de-
pending non-consumptive effects of shallow subtidal
predators and algal host characteristics [45], and can be
a major driver of, at least, subtidal macrobenthic assem-
blages [46, 47]. According to a global literature review
that includes the western Antarctic Peninsula, small
grazers like amphipods can have strong and significant
effects on the structure of local communities [48]. Ac-
cordingly, populations of small meso-grazers associated
to intertidal tide pools might have a strong effect on
benthic colonisation, and these effects could well be
comparable to that of larger grazers.

Conclusions
In summary, the combination of observational and ex-
perimental approaches of our study allowed us to deter-
mine significant, but independent, effects of grazing and
tide pool habitats on early-successional Antarctic com-
munities. The role of meso-grazers such as amphipods
and small littorinid snails should be also considered in
order to increase the accuracy of predictive models of
intertidal community structure. Nevertheless, we suggest
that the comparatively high mobility of Nacella allows
this species to strongly control the colonisation patterns
of these Antarctic habitats, independently of local envir-
onmental conditions. The relevance of understanding
how these ecosystems function—especially in the early
stages of development—cannot be underestimated.

Additional file

Additional file 1: Figure S1 Percentage cover of dominant sessile
species in King George Island. Percentage covers of each macrobenthic
species were estimated in situ in 15 50 × 50 cm quadrats divided in 25
equal fields. Estimations were conduced on emergent rocks and in tide
pools. (DOCX 57 kb)
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