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Abstract 

Background: For the genus Thylamys, the rivers have been reported as barriers to dispersal, limiting current and his‑
torical distribution of its lineages. We hypothesized that the Maipo river has affected the genetic structure of northern 
and southern lineages of Thylamys elegans, recovering a phylogenetic relationships with reciprocally monophyletic 
sister groups on opposite river banks. We evaluated the role of other rivers in the Mediterranean zone of Chile as 
historical and recent modulators of the biogeographic processes of this species.

Methods: We applied a phylogeographic approach, using the cytochrome‑b mitochondrial gene for 93 individuals 
of T. elegans, from 37 localities in a latitudinal gradient between 21°25’ and 35˚56’S, encompassing a geographic area 
between the Atacama Desert and most of the Mediterranean Chilean zone.

Results: The phylogenetics results recovered six lineages within T. elegans: Thylamys elegans elegans, Thylamys elegans 
coquimbensis, the Loa lineage and three other lineages not described previously (Aconcagua, South 1 and South 2). 
We suggest that following rivers play a role like primary barrier: the Maipo river in the genetic differentiation of north‑
ern and southern ancestral lineages, and the Mataquito river and its tributary Teno river for the South 1 and South 2 
lineages. On the other hand, the Quilimarí river preserve the genetic divergence in T. e. coquimbensis and Aconcagua 
lineage and the Aconcagua river in Aconcagua lineage and T. e. elegans acting like secondary barriers.

Conclusions: We concluded that the genetic diversity and biogeographic history of T. elegans was shaped by moun‑
tain glaciers, changes in river water levels during the Pleistocene glaciations and hyperaridity, promoting the differen‑
tiation and persistance of the T. elegans lineages.
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Background
Since the 19th century, rivers have been proposed as geo-
graphical barriers to dispersal for several taxa [1]. The 
riverine barrier hypothesis proposes that populations of 
different river banks become progressively isolated each 
other and predicts populations of opposite banks with 
reciprocally monophyletic relationships [2, 3]. The effects 
of rivers on the biota has become more evident by the use 

Open Access

Revista Chilena de
Historia Natural

*Correspondence:  dusan.boric@pucv.cl
^Daniel González‑Acuña is deceased.
1 Instituto de Biología, Facultad de Ciencias, Pontificia Universidad 
Católica de Valparaíso, 2373223 Casilla, Valparaíso, Chile
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40693-021-00103-5&domain=pdf


Page 2 of 14Boric‑Bargetto et al. Revista Chilena de Historia Natural            (2021) 94:5 

of molecular and bioinformatics tools. Three hypotheses 
are proposed to explain riverine divergence by mean of 
primary differentiation, secondary contact and dispersal: 
(1) primary differentiation, with a river acting as a com-
plete vicariant barrier for an existing taxon range, result-
ing in a topology with reciprocally monophyly of sister 
clades from opposite banks; (2) secondary differentiation, 
with a river as a common contact zone acting as a barrier 
to dispersal, preventing secondary contact of previously 
differentiated populations and a topology with oppo-
site river lineages showing more recent common ances-
tor with others populations of the same river bank and 
lineages from opposite banks are not sister clades; (3) 
dispersal events from an established populations to the 
opposite riverbank, with the river being a permeable bar-
rier to gene flow and a topology with paraphyly [2–4]. If 
rivers represent a barrier to populations of some species, 
it is expected that the diversification between popula-
tions from opposite riverbanks coincide with the forma-
tion of the river. If they do not coincide temporarily, the 
river is unlikely to be the primary divergence agent, but 
then it could have acted as a barrier to gene flow [5].

Didelphidae is one of the oldest families of extant 
mammal [6]. Species of this family inhabit in forest and 
open habitat in the Neotropics [7]. Rivers have been 
reported as geographic range boundaries or as barriers 
to gene flow in some populations of didelphid marsupials 
of genus Philander, Marmosa, Gracilinanus, Marmosops 
and Cryptonanus in the Amazon River [8–10]; the Paraná 
and Paraguay rivers [11, 12], the São Francisco river [13, 
14] the Paraguay river [15], the Tocantins river [14], the 
Doce and Paraíba do Sol rivers [16] and Tapajós rivers 
[10]. In Thylamys, the effect of rivers such as geographic 
barrier to gene flow or geographic boundary of distribu-
tional range has been reported for the following rivers: 
Paraná for T. citellus and T. pulchellus; Bermejo for T. 
pulchellus and T. pusillus, Paraguay for T. pusillus, Paraná 
and Uruguay for T. citellus [17], Pilcomayo for T. pusillus 
A and T. pusillus B; and Paraná and Uruguay for T. pusil-
lus C [18]. Paraná for T. pusillus C and T. pusillus A, and 
Paraguay for T. pusillus B, T. pusillus C and T. pusillus A 
[18], and Cañete for T. tatei and T. sp [19].

Thylamys elegans is one out of two Thylamys species 
present in Chile [19, 20]. This species has a huge distri-
bution from the north of the Loa river Mouth (21°25’S) 
to Angol and adjacent areas of the Nahuelbuta coastal 
range (37°50’S) according to historical records, covering 
an extension close to 1850 km [19–22]. Thylamys elegans  
is a mouse-like marsupial whose activity is mainly arbo-
real and crepuscular. Its diet items are composed mainly 
by insects although fruits, small vertebrates and even car-
rion occasionally are consumed [7, 23]. This and other 
species of Thylamys genus are characterized by its tail 

incrassation during winter periods when the specimens 
fall in torpor [23–25]. A marked north-south climatic 
gradient is present in this wide distribution, with dif-
ferent environment in each geographical zone [26–28]. 
Thus, those populations that inhabit xeric environments 
are associated with small patches of available vegeta-
tion (see Fig.  1b), while the specimens that inhabit in 
humid environment had several different habitats avail-
able even into brushy ecotones of relictual cloud forest 
of the Coquimbo region, northern and central part of 
the Coastal ranges and the steppes of Central Chile [19, 
20, 23, 29, 30] (See Fig.  1c). Clearly this huge and con-
trast distribution produce a strong cline in size, color 
and shape of the different populations [20, 21, 23, 24, 31, 
32]. Actually, the differences between clines have been 
enough to suggest three subspecies based only in mor-
phological characters [21, 23, 24, 32], but its distribution 
boundaries are still uncertain [19, 20, 33].

Additionally, studies have found genetic structure in 
the distribution of T. elegans [19, 20, 34], but the genetic 
clades not match with the morphological subspecies 
described (see [20, 33] for T. e. coquimbensis). These 
evidences suggest that morphological variability could 
be more related with the environment than the genetic 
fingerprint and for that reason is still difficult delimit 
the distributional range of the different lineages or sub-
species. Anyway, so far, what is limiting the distribution 
of each lineage or subspecies in T. elegans is still uncer-
tain. A previous study proposed in Mediterranean zone 
of Chile, the Maipo river as an strong geographic barrier 
in the genetic differentiation of northern and southern 
clades of Thylamys elegans [19] and a genetic differentia-
tion congruent with the position of the Maipo river has 
been reported for other taxa [35–41]. Indeed, some riv-
ers can act as barriers to gene flow and/or geographic 
boundary of distribution structuring genetic diversity in 
different taxa from Chile [36, 41–46]. However, none of 
these papers discussed in detail if the riverine divergence 
would be a primary or secondary differentiation [47]. On 
the other hand, the historical and recent effects of other 
rivers different to Maipo river on the differentiation of 
T. elegans lineages are still unknown, being necessary to 
evaluate if the role of rivers was for primary diversifica-
tion, secondary contact or dispersal [4]. Knowing these 
effects is very relevant in the geographical context in 
which this species is distributed, where the spatial com-
plexity of the landscape is proposed as the cause of the 
high endemism of one of South America’s biodiversity 
hotspots [48, 49]. Therefore, under these evidences the 
hypothesis about the rivers as phylogeographic determi-
nant is novel to test it in T. elegans given that in Chile a 
role of rivers in the genetic differentiation of a mammal 
has never been discussed in detail.
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Although the largest rivers in South America are in 
tropical and subtropical regions, the effects of smaller 
rivers in the temperate region as geographic boundaries 
or barriers to gene flow were reported in Chile for the 
Huasco, Copiapó, Elqui, Aconcagua, Maipo, Mataquito, 
Claro, Lircay, Maule, Itata and Bío-Bío rivers [35–46, 
50–55]. Therefore, the main goal of this study was to 
evaluate, through a phylogeographic approach, the role 
of some rivers of Mediterranean Chilean zone on the 
genetic structure of T. elegans. We propose that some riv-
erine barriers from Mediterranean zone of Chile shape 
the genetic diversity of Thylamys elegans, triggering 

the genetic divergence of its lineages through vicariant 
events as primary riverine divergence, or persistence of 
its genetic differentiation with rivers acting as geographic 
boundaries of lineages previously differentiated and pos-
terior secondary riverine differentiation.

Methods
Collections
We perform nine field campaigns between 2010 and 
2012 which covered most of the distributional range of 
T. elegans. From these campaigns and voucher specimens 
stored at the Colección de Flora y Fauna Patricio Sánchez 

Fig. 1 Morphological variability and environment of Thylamys elegans. a Adult specimen and landscape from the Loa river Mouth, Loa lineage 
(Clade A); b Adult specimen corresponding to T. e. coquimbensis from Paihuano and ravine from Llanos de Challe (Clade B); c Adult specimen 
and landscape from Los Molles corresponding to the Aconcagua lineage (Clade C); d Adult specimen corresponding to T. e. elegans from Punta 
Curaumilla and landscape from Las Docas (Clade D; e) Adult specimen from Lipimávida and landscape from Pupuya, corresponding to the South 1 
lineage (Clade E); f Adult specimen (not sequenced) and landscape from Nahuelbuta Coastal range, probably corresponding to the South 2 lineage 
(Clade F). Northern clade encompasses the Loa, T. e. coquimbensis, Aconcagua and T. e. elegans lineages and southern clade encompasses the South 
1 and South 2 lineages
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Reyes, Pontificia Universidad Católica de Chile, we had 
available samples from north of the Loa river Mouth, 
(21°25’S) in the Tarapacá region to Tregualemu (35°56’S) 
in the Maule region (Fig. 2, see details in Additional file 1: 
Appendix I). Specimens were collected with Sherman 
traps (8 × 9 × 23 cm) using a mixture of oat, banana and 
canned fish as bait or crushed oat. Captured individuals 
were euthanized with isofluorane overdose and cervical 

dislocation. Collection and handling recommendations 
were followed according to the American Society of 
Mammalogists [56]. Samples were obtained from differ-
ent tissues such as blood, hair or liver. Also from ear skin 
or tail from corpses found on fieldwork and donations of 
tissues by collaborators. Eighteen samples correspond to 
donations, 63 samples belonged to Colección de Flora 
y Fauna Patricio Sánchez Reyes, Pontificia Universidad 

Fig. 2 Summarized phylogeny and map with the 37 sampled spots in this study. The colors of the sampled spots match with clades on the 
tree (also for Fig. S1 and Fig. S2). Most important branches of the rivers that limit the lineages of T. elegans are shown (Quilimarí, Aconcagua, 
Maipo, Mataquito and its tributary Teno). Loa lineage (Clade A: blue); T. e. coquimbensis (Clade B: cyan); Aconcagua lineage (Clade C: orange); T. e. 
elegans (Clade D: brown); South 1 lineage (Clade E: green); South 2 lineage (Clade F: red). Northern clade encompasses the Loa, T. e. coquimbensis, 
Aconcagua, and T. e. elegans lineages and southern clade encompasses the South 1 and South 2 lineages
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Católica de Chile and 14 samples from 10 localities were 
captured and euthanized in this study (See details in 
Additional file  1: Appendix I). The samples were stored 
in cryotubes preserved in liquid nitrogen or 70 % ethanol. 
All voucher specimens (tissues, skins or skeletons) were 
stored at the Colección de Flora y Fauna Patricio Sánchez 
Reyes, Pontificia Universidad Católica de Chile.

DNA extraction, amplification and sequencing
DNA was extracted with phenol-chloroform procedures 
[57]. The complete cyt-b mitochondrial gene (1149 base 
pairs) was used for 93 individuals of T. elegans from 37 
localities and 2 sequences corresponding to T. pallidior 
A and T. pallidior B respectively as outgroup, (includ-
ing 32 sequences from previous studies in Thylamys 
genus [19, 20, 58] and 63 new sequences generated in 
this study with the following genbank access number 
(MZ868645- MZ868707, see details in Additional file  1: 
Appendix I). This gene has been widely used in phylogeo-
graphic studies in Thylamys genus because its variability 
[17, 20, 33, 58]. PCR amplification reactions followed 
described protocols [19, 20], and products were purified 
with QIAquick PCR Purification Kit (QUIAGENTM Inc., 
Valencia, CA, USA), and sequenced in MACROGEN Inc. 
(Seoul, Korea). Sequences were edited in Bioedit [59] and 
aligned in Clustal W [60] using default parameters and 
encoded to aminoacid in DnaSP v6 [61] to verify the lack 
of internal stop codons.

Phylogenetic reconstruction
The phylogenetic reconstructions was based on 49 haplo-
types and 95 sequences using Maximum Likelihood (ML) 
criterion on the online version of IQ-TREE software [62] 
available at http:// iqtree. cibiv. univie. ac. at [63]. The best 
model of evolution was retrieved with ModelFinder [64] 
implemented in IQ-TREE using the Bayesian Information 
Criterion (BIC) prior to the construction of the ML trees. 
To assess branch support, the ultrafast bootstrap approx-
imation (UFboot2) with 1000 replicates was implemented 
[65]. Bayesian Inference (IB) was performed using Mr. 
Bayes 3.2.6 [66]. Four simultaneous Markov chain Monte 
Carlo chains were run for 10,000,000 generations, with a 
sampling frequency of 1,000 generations. The first 25 % 
trees were discarded as burn-in and remaining trees were 
used to compute a 50 % majority rule consensus tree and 
to obtain posterior probability estimates for each clade. 
The ML and BI phylogenies were rooted using T. pallidior 
A and T. pallidior B as outgroup (see details in Additional 
file 1: Appendix I, Fig S1, Fig S2) following to [19, 58]. To 
assess the genetic distance between lineages within T. 
elegans a corrected distance Kimura 2-parameters (K2P) 
was calculated in MEGA 7.0 [67].

Genetic structure
To estimate the geographic population structure of T. ele-
gans in a Bayesian framework, we used GENELAND v4.0 
[68]. The number of genetic clusters (K) was determined 
using a prior of K between 1 and 37 (number of locali-
ties used in this study). We performed 10 independent 
runs of 5,000,000 iterations, sampling every 1,000 steps. 
Burning and convergence of the chains were determined 
with a 0.1 cutoff value and using uncorrelated and cor-
related frequency models, selecting the most probable 
model by using the Bayes Factor statistic [69]. Correlated 
frequency model was chosen and we set the K value to 
6 considering the posterior probability distribution of the 
parameter. After that, five runs were post-processed by 
burning 5 % of first iterations and we obtain the posterior 
probability of assignment for each individual to a genetic 
cluster and to each pixel in the spatial domain. Maximum 
number of Poisson-Voronoi tessellation nuclei was set at 
279 according to the number of genotypes used for the 
analysis (93 × 3) [70].

Divergence times
To estimate the divergence times for the T. elegans line-
ages, we used the Bayesian algorithm implemented in 
BEAST 2.5.2 [71]. The best molecular clock model was 
selected by Bayes Factor comparing three clock models 
(strict, uncorrelated lognormal relaxed and uncorrelated 
exponential relaxed) in Tracer v1.5 [72]. The uncorrelated 
lognormal relaxed molecular was chosen, using as priors 
the general time reversible model of sequence evolution 
(GTR + G) and a Yule speciation process. The calibra-
tion points selected for the analysis following to [19]
were the same T. pallidior-T. elegans molecular diver-
gence, estimated at 6.11 Million year ago (Mya), (High-
est posterior density HPD: 5.92-6.3), and the T. tatei-T. 
sp molecular divergence at 4.65 Mya (HPD: 4.46-4.85) 
(Fig S3). Estimate of posterior distribution was obtained 
through Markov Chain Monte Carlo MCMC method 
with 20,000,000 iterations, sampling parameters every 
10,000th steps, and burning the first 10,000 to achieve 
convergence of posterior probability distribution. The 
convergence of samples obtained by MCMC method was 
visualized in Tracer v1.5 [72]. We verified if the Effec-
tive Sample Size of all parameters had values greater 
than 200. Maximum credibility tree was calculated in 
TreeAnotator v1.7.0 [73]. The tree was displayed and 
edited in Figtree 1.4.2 [74].

Results
BIC identified the HKY+F+G4 model as the best nucleo-
tide substitution model for a matrix with 49 haplotypes 
and other with 95 sequences. Gamma shape distribution 
parameter was 0.2818 for haplotype matrix and 0.183 for 

http://iqtree.cibiv.univie.ac.at
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sequences matrix. Both ML and IB reconstruction with 
haplotypes and all sequences showed the same phylo-
genetic relationship among six lineages (see Fig.  2, Fig. 
S1 and Fig. S2). T. elegans is a clade highly supported 
(100/1). The ingroup exhibited six monophyletic groups 
with high bootstrap supports and posterior probability 
values (Fig. S1 and Fig. S2). The southern clade contained 
the South 1 and South 2 lineages (99/1), and the northen 
clade contained T. e. elegans sister to (T. e. coquimben-
sis, (Loa lineage, Aconcagua lineage)) with high support 
(97/1). The Loa lineage (Clade A) is restricted to north 
of the Loa river mouth (21°25’S) (1 locality, n = 6). The 
Aconcagua lineage (Clade C) encompasses localities 
from Fundo el Roble (32°16’S) to Fundo Chuico Blanco 
(32°48’S) covered about 100 km from the Quilimarí river 
and the Santa Inés-Imán mountain range to the Aconca-
gua river and the Chacabuco range (7 localities, n = 15). 
T. e. coquimbensis (Clade B) encompasses localities from 
Quebrada El León (26°57’S) to Valle El Mauro (31°58’S). 
The southern boundary would be the Quilimarí river and 
Santa Ines-Imán mountain range (8 localities, n = 19). 
On the other hand, T. e. elegans (Clade D), encompasses 
localities from La Campana (32°57’S) to Viña Leyda 
(33°34’S) between the Aconcagua river and Chacabuco 
range and the Maipo river and Altos de Cantillana range 
(10 localities, n = 33). The South 1 lineage (Clade E) 
encompasses localities from San Enrique (33°53’S) to 
Duao (34°52’S), between the Maipo to Mataquito river 
and its tributary Teno river (7 localities, n = 13). The 
South 2 lineage (Clade F) encompasses localities from 
Los Queñes (35°0’S) to Tregualemu (35°56’S), between 
the Mataquito and Teno rivers to Tregualemu (4 locali-
ties, n = 7) (Fig. S1, Fig. S2).

The corrected distance (K2P) values were between 2 % 
for the South 1 and South 2 lineages to 11.9 % for the 
Loa and South 1 lineages (Table  1). On the other hand, 
our results show a genetic distance of 5.5 % between the 
northern clade (i.e. Loa lineage, T. e. coquimbensis. Acon-
cagua lineage and T. e. elegans) and southern clade (i.e. 
South 1 lineage and South 2 lineage).

GENELAND analysis detected six genetic clusters 
(Fig. 3) which fit with the six lineages of T. elegans recov-
ered in the phylogenetics reconstruction (Fig.  2, Fig. S1 
and Fig. S2). Detection of the geographical genetic dis-
continuities correspond to the Loa, Quilimarí, Aconca-
gua, Maipo, Mataquito and Teno rivers and the Santa 
Inés-Imán, Chacabuco and Altos de Cantillana mountain 
ranges previously described (Figs. 2 and 3). GENELAND 
(Fig. 3) estimated clusters corresponding to the following 
lineages described in Fig. 2, Fig. S1 and Fig. S2: (1) Loa 
(Clade A); (2) T. e. coquimbensis (Clade B); (3) Aconcagua 
(Clade C); (4) T. e. elegans (Clade D); (5) South 1 (Clade 
E), and (6) South 2 (Clade F). T. e. coquimbensis encom-
pass 550  km, and the Aconcagua, T. e. elegans, South 1 
and South 2 lineages together encompass 365 km (Fig. 3).

The T. elegans clades diverged as follow (see Fig. 4 and 
Fig. S3): northern and southern clades, 3.14 Mya (HPD: 
2.95-3.33); T. e. elegans from the clade with T. e. coquim-
bensis sister to the Loa and Aconcagua lineages, 1.84 Mya 
(HPD: 1.41-2.27); T. e. coquimbensis from the Loa and 
Aconcagua lineages, 1.41 Mya (HPD: 1.07-1.8); the Loa 
and Aconcagua lineages, 1.28 Mya (HPD: 0.91-1.64); the 
South 1 and South 2 lineages, 0.81 Mya (HPD: 0.48-1.2) 
(Fig.  4); the Andean-Coastal clade from T. pallidior A 
and T. pallidior B, 3.35 Mya (HPD: 3.16-3.54), T. sp and 
T. tatei, 4.65 Mya (HPD: 4.46-4.85) and T. pallidior-T. ele-
gans from T. tatei-T. sp, 7.64 Mya (HPD: 6.61-8.73) (Fig. 
S3).

Discussion
Geographical distribution of Clades
We recovered four groups at the north of the Maipo river 
(southern clade): (1) The Loa lineage, (2) T. e. coquim-
bensis, (3) T. e. elegans and (4) the new lineage Aconca-
gua. The Loa lineage (Clade A) is located north of the 
Loa river mouth (21°25’S), and so far is the only popu-
lation known for this lineage, but specimens have been 
recorded in Paposo-Taltal [30] which could belong to this 
lineage as well. Whereas T. e. coquimbensis (Clade B) has 
the widest distributional range. Our results extend its 
distributional range between the coast of Atacama south-
ward to the Coquimbo region from Quebrada El León 
(26°57’S) to Valle El Mauro (31°58’S), with the Quilimarí 
river and Santa Inés-Imán mountain range as southern 
boundary (Figs. 2 and 3, Fig. S1 and Fig. S2). These two 
lineages inhabits in the hyperarid Atacama in localities 
as the northern Loa river mouth, Quebrada El León and 
Llanos del Challe where the rain barely reaches the 10 to 
20 mm/yr [75, 76] and are the most extremophilous line-
age which inhabit in small patches, strongly associated to 
rivers, ravines, or riverbeds taking advantage of the avail-
able water and the small bushes present there (see Fig. 1a, 
b).

Table 1 Corrected genetic distance values between the six 
lineages of T. elegans using the K2P model

1 2 3 4 5

1 Loa

2 T. e. coquimbensis 0.043

3 Aconcagua 0.041 0.036

4 T. e. elegans 0.056 0.044 0.051

5 South 1 0.119 0.101 0.087 0.097

6 South 2 0.109 0.085 0.081 0.082 0.020
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On the other hand, Our results showed that in the 
next southern clades the ranges of distribution are 
drastically reduced. The new lineage Aconcagua (Clade 
C) is restricted from Fundo El Roble (32°16’S) to Fundo 
Chuico Blanco (32°48’S), between the Quilimarí river-
Santa Inés-Imán mountain range to the Aconcagua 
river and the Chacabuco mountain range. Same than 
T. e. elegans (Clade D) which is restricted between the 
Aconcagua river and Chacabuco range (32°57’S) and 
the Maipo river and Altos de Cantillana range (33°34’S). 
At the South of the Maipo river (southern clade), two 

lineages previously not described were recovered. The 
South 1 lineage (Clade E) between the Maipo river and 
Altos de Cantillana range (33°3’S) and the Mataquito 
river (35°3’S) and its tributary Teno river (34°55’S). 
Finally, the South 2 lineage (Clade F), restricted at 
south of the Mataquito-Teno rivers at least until Tre-
gualemu (35°56’S). Interestingly, the specimens from 
the South 2 lineage could be assigned to T. e. sorici-
nus according to [29], who describe its distribution 
until Radal Siete Tazas and the junction of the Claro 
and Maule rivers, which is totally consistent with the 

Fig. 3 Genetic structure in geographic space of T. elegans. Maps of posterior probabilities isoclines of genetic clusters membership with its 
respective populations belonging to a panmictic unit correspond to the six lineages of T. elegans detected by GENELAND analyses. Last column: 
synthetic map of the K‑origin of each pixel. Blue line is the Maipo river such a geographic boundary between the northern and southern clades; 
other six columns: relative posterior probability of belonging to each K cluster. Black dots show sampled populations and lighter background 
colours indicate higher posterior probability of membership to the given K cluster. Thinner black lines are isoclines of inclusion probability and 
numbers are posterior probabilities values. Cluster 1 correspond to Loa lineage (Clade A), Cluster 2 correspond to T. e. coquimbensis (Clade B), Cluster 
3 correspond to Aconcagua lineage (Clade C), Cluster 4 correspond to T. e. elegans (Clade D), Cluster 5 correspond to South 1 lineage (Clade E), and 
Cluster 6 correspond to South 2 lineage (Clade F). Northern clade encompasses the Loa, T. e. coquimbensis, Aconcagua and T. e. elegans lineages and 
southern clade encompasses the South 1 and South 2 lineages
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distribution of the South 2 lineage (Figs.  2 and 3, Fig. 
S1 and Fig. S2). Historical records [21, 22, 32] propose 
that T. e. soricinus could inhabit as far as the south of 
the Bío-Bío river until Angol and adjacent areas of the 
Nahuelbuta Coastal range 37°50’S (see Fig. 1f ).

In the northern part of the Mediterranean region 
(31°–35°S), thorny scrublands alternate with scle-
rophyllous woodlands and relict populations of the 
Chilean palm, in the Valparaíso region, while in the 
southernmost zone (36°–38°S), sclerophyllous forests 
mixed with broadleaf evergreen and deciduous forests 
form a diverse ecotone in the Mediterranean-temperate 
climatic transition [26]. In summary, from the land-
scape point of view, we can divide the distribution of 
T. elegans lineages in three climatic zones adapted from 
[26–28]: (1) Desert characterized by scarce or null 
vegetation where inhabit mainly the clades A in Tara-
pacá region and northern part of clade B in Atacama 
region, (2) Dry Mediterranean with vegetation type 
such as dry xerophytic thorn scrublands and evergreen 

sclerophyllous communities where inhabit mainly the 
clades C, D and E, but also the southern populations 
of clade B in Coquimbo region and 3) Wet Mediterra-
nean, dominated by deciduous forest were inhabiting 
the clade F in Maule region.

Phylogeographic determinants
About 3.5 Mya a dramatic climatic change occurred 
because was the end of the warm Pliocene as result of 
global cooling. During this major climate cooling, impor-
tant glaciations in all Andes occurred [77, 78] and con-
sequently the rivers formation post-Pliocene glaciation 
[79, 80]. Following further cooling towards the Quater-
nary and throughout the Quaternary established the 
South American Arid Diagonal [81] which change the 
landscape of the continent as is known today. Likely, 
all these climatic events triggered the separation of the 
northern and southern Maipo clades by a vicariant event, 
because the Maipo river flow increase posterior to a gla-
ciation and cooling periods due to melting of glaciers. 

Fig. 4 Divergence times of the six lineages of T. elegans. Clades correspond to Fig. 2. Number of nodes are average values and bars in yellow are the 
95 % HPD. A time scale show the geological ages. Gray shaded areas represent the GPG (~1.68‑1.016 Mya) and the CPG (~0.7‑0.6 Mya). Below the 
tree glacial‑interglacial cycles were reconstructed using the data available from [82] and the historical ocean temperature available from [84]
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These geographic barriers could be reinforced for the 
transversal range that joined the Andes with the Coastal 
Cantillana range, the Maipo river has been a hard barrier 
from this period. The reciprocally monophyletic clades 
in opposite banks and the oldest divergence time (3.14 
Mya) are strongly supporting the primary vicariant event 
as hypothesis of diversification on the Pleistocene (Figs. 2 
and 4, Fig. S1, Fig. S2 and Fig. S3). After a huge gap of 
diversification, around 1.8 Mya stands for the most fun-
damental change in global climate and climate variabil-
ity in the Quaternary, referred to as the Mid Pleistocene 
Transition [82–84]. This period coincides with the sig-
nificant emergence of diversification events in T. elegans 
at ~1.8-0.8 Mya. During this period, the previous domi-
nant periodicity of climate cycles changed from a 41 kyr 
to a 100 kyr cycle, causing high amplitude climate oscil-
lations (e.g.[82, 85]). Pronounced cold and warm cycles 
during the remaining Quaternary most likely caused the 
repeated cyclical opening and closing of migration cor-
ridors, in this case by rivers or hyperaridity, promoting 
further differentiation in the lineages of T. elegans. These 
divergence time match with the deep effect that the Great 
Patagonian Glaciation (GPG~ 1.68-1.016 Mya) gener-
ated on a wide range of taxa in southern South America 
[86]. Therefore, glacial-interglacial cycles of the Qua-
ternary could affect the river water levels fluctuations 
of the Mediterranean Chilean zone, becoming potential 
barriers to gene flow of the lineages of T. elegans during 
melting of glaciers and more permeable barriers during 
glaciations[35, 36, 40, 55, 87, 88]. During glacial- intergla-
cial cycles, great ice masses descending to around 1100-
1300 masl between 33-34°S in the Aconcagua and Maipo 
valleys [89–91]. Around ∼1.84 Mya, the T. e. elegans line-
age was separated from the northern lineages because the 
Aconcagua river and Chacabuco range acted as effective 
geographic barriers and biogeographical determinants 
to keep its ancestral range. While the other lineages of T. 
elegans differed in central and northern Chile in a rela-
tively short period of time. Around ∼1.41 Mya, the line-
age T. e. coquimbensis occupied northern areas probably 
because a hyperarid period between 2 and 1 Mya affected 
the Atacama Desert region [92], allowing that a small 
population crossed the Quilimarí river though the coast 
because the lower river water levels in middle courses 
and river mouths of the Mediterranean Chilean zone 
were more permeable barriers [93].

Then, the peripherical differentiation in the Coquim-
bean Andes avoiding the hyperaridity of the desert, 
facilitated that this lineage reach its northernmost distri-
bution along the coast in Quebrada el León in posterior 
favorable conditions. Today the Quilimarí river and the 
Santa Inés-Imán mountain range seem to be the south-
ern distribution boundary of T. e. coquimbensis but it is 

not clear if they are strong barriers to southern disper-
sion allowing secondary divergence. Finally, one of the 
most complex scenarios occurred about 1.28 Mya, where 
Central Chile was colonized. Some populations from the 
Atacama Desert at the north of the Loa river mouth, dif-
ferentiated into the Loa lineage. Likely, the Loa lineage 
had a distribution extended further south in the Ata-
cama Desert. Then, the populations were connected by 
old corridors and perhaps the southernmost dispersal 
to Central Chile. Huge corridors in the Atacama Desert 
have been proposed for other organism to explain this 
strange vicariant distribution with a huge gap [94, 95]. 
However, these corridor are not permanent and probably 
have been severely closed during hyperarid periods (as it 
is now) in the Atacama and today the biota can survive 
in small pocket with suitable conditions [94], while other 
middle population were extinguished. The Aconcagua 
lineage finally differentiated between the Quilimarí river 
and Santa Inés-Imán mountain range and the Aconcagua 
river and the Chacabuco range as barrier to southern dis-
persion allowing secondary divergence. Probably, these 
events are related, occurring almost at the same period.

On the other hand, the southern history is more recent 
and simpler, because the phylogeny recovered recipro-
cally monophyletic groups on opposite banks suggesting 
that around 0.81 Mya during the Pleistocene, a vicariant 
event promoted by the Mataquito river and its tributary 
Teno river caused the divergence between the South 1 
and South 2 lineages (Figs. 2 and 4, Fig. S1, Fig. S2 and 
Fig. S3). Chile was strongly affected by the Pleistocene 
glaciation, particularly in the south part of the coun-
try with an event as the Great Patagonian Glaciation 
(GPG~1.68-1.016 Mya) and the Coldest Pleistocene Gla-
ciation (CPG~0.7-0.6 Mya). These glaciations could be 
related with the water levels increase of the Mataquito 
and Teno rivers [96] and acting such as primary vicariant 
barrier between both lineage. Mataquito river has been 
reported as a phylogeographic break at 35° S for terres-
trial animals [38, 42].

In general, we have two spatially contrasting sce-
narios for explain the structure found. Central Chile 
understanding as the region from the Quilimarí river 
(32°6’S) to the Bío-Bío river (36°48’S) had a greater influ-
ence of glaciations, generating a greater water levels in 
the past for rivers [35, 36, 40, 55, 87, 88] and these riv-
ers have strongly influenced on the genetic structure of 
T. elegans, but with different intensity. Thus, Maipo and 
Mataquito-Teno rivers acted such as primary and strong 
barriers, while rivers north to Maipo such as Quilimarí 
and Aconcagua are secondaries barrier which in some 
parts of their history were permeable for the fauna. On 
this way, the past climate changes to the hyperaridity 
would be the key to explain the current distributional 
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range of the T. elegans lineages in the Atacama Desert 
and northern Mediterranean zone of Chile (i.e. north of 
the Quilimarí river). The Loa lineage which is enclosed in 
a small pocket in the north Loa river mouth is currently 
distributed far of its sister clade (Aconcagua lineage) in 
Central Chile and is the good example of the dramatic 
effect of the aridity for the biota, probably extinguishing 
populations between the Loa and Aconcagua lineages 
(Fig.  2, Fig. S1 and Fig. S2). However, T. e. coquimbesis 
would have recently replaced whose anteriorly extin-
guished populations from Coquimbean Andes. The huge 
distribution of T. e. coquimbesis in the Atacama desert 
(Figs.  2 and 3), without genetic structure seem indicate 
that the effects of rivers are apparently null there, even 
when some rivers have been reported as important bar-
rier for animals, particularly the Huasco and Copiapó riv-
ers [51, 55]. However, the survivor Atacama populations 
today are living in small patches with vegetation which 
are small island in the hyperarid Atacama.

Probably with the creation of the Arid Diagonal and the 
periodic climate oscillation which changed the landscape 
several times in the last 1.5 Mya, the different ances-
tors of each lineage were adapted to xeric environment 
(clades A and northern part of clade B), mesic (clades 
C, D,E and southern part of clade B) or humid environ-
ment (Clade F) favoring even more the differentiation 
not drove by barriers. A similar scenario was reported in 
Abrothrix longipilis with lineages restricted to different 
bioclimate [26, 47]. Therefore, although today some riv-
ers as the Quilimarí or even the Aconcagua seems to be 
barriers, that they could be only delimitating the current 
distribution of the lineages but not promoted divergence 
by vicariance as suggest the topology and phylogenetic 
relationships of our results because T. e. coquimbensis 
and Aconcagua lineage from opposite banks of Quilimarí 
and Aconcagua lineage and T. e. elegans from opposite 
banks of Aconcagua river are not sister clades (Fig. 2, Fig. 
S1 and Fig. S2). Probably, the current population of each 
clade is enclosed in particular patches avoiding the arid-
ity. Therefore, the scenario of permeable barriers is also 
possible, but have not been detected due to the elapsed 
time or because these lineages have not crossed the riv-
ers since they are in its habitat distribution avoiding the 
aridity. In the future its necessary to evaluate explicitly 
the synergistic effect of topography, glaciations and riv-
ers in the phylogeographic structure of more Chilean 
species from Mediterranean zone of Chile. The Andean 
and Coastal range, multiple ice sheet glacial advances and 
retreats and increases in level water volumes due to melt-
ing ice probably influenced terrestrial communities in 
this region. As such, widely distributed endemic species 
as T. elegans is a good model to assess the joint effects of 

topography, glacial cycles, and changes in the river water 
volumes on its genetic differentiation and phylogeo-
graphic structure of T. elegans lineages [36, 52, 97].

Taxonomic implications
Apparently, the intraspecific diversity of T. elegans has 
been historically underrated, and our evidence shows 
six clearly differentiated genetic lineages. The Loa line-
age was previously reported [19, 20], meanwhile a drastic 
reduction of distributional range was reported in T. e. ele-
gans and an increase to coastal areas from Atacama and 
Coquimbo region in T. e. coquimbensis [20]. However, 
the Aconcagua, South 1 and South 2 are newly lineages 
reported in this study (Figs. 2 and 3, Fig. S1 and Fig. S2).

In general, the genetic distance for species of the genus 
Thylamys are between 2.5 and 20 % [18, 19, 98]. In our 
case, the values observed in the genetic differences for 
the six lineages of T. elegans was between 2 and 11.9 % 
For example, we are reporting a genetic distance of 9.7 % 
between the northern and southern clades (Table  1) 
which is even higher than 5.4 % between T. elegans 
“north” and T. elegans “south” detected by [19] or higher 
than linages found within of T. pallidior (5 %), T. venus-
tus (5.4-3.9 %), and T. sponsorious (2.5 %) [18]. However, a 
study with 82 marsupial species reported that 95 % of cyt 
b interspecies genetic distances in marsupials have values 
between 9 % and 16 % with a mean of 12.3 % [99].

Therefore, our results are suggesting a cryptic taxo-
nomic scenario which should be approached by integra-
tive evidence considering species delimitation species 
analyses, other genes and/or morphological characters. 
The evidence presented is only the starting point to high-
light the deep genetic structure within T. elegans and for 
the moment, our study is a simple call for futures accu-
rate taxonomic studies on this endemic mouse opossum.

Conclusions
Biogeographic history of T. elegans was shaped mainly for 
changes of the rivers water levels during the Pliocene and 
Pleistocene glaciations modulating the genetic differenti-
ation of its lineages. Our results sustain a comprehensive 
overview suggesting how and when the genetic diversity 
in T. elegans was structured in the past. We found dif-
ferent intensity of the phylogeographic determinants in 
the northern and southern clades. For the first time we 
reported the effects of the Maipo, Mataquito and Teno 
rivers on the genetic structure and lineage divergence of 
an endemic small mammal of Chile as primary riverine 
divergence. While the Quilimarí and Aconcagua rivers 
were barriers to dispersal, acting as actual geographic 
boundary and geographic barriers preventing second-
ary contact in periods of demography and geographic 
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expansion such a secondary riverine divergence. There-
fore, rivers must be considered as dynamic barriers that 
fluctuate over time, have been effective barriers to gene 
flow. However, the Maipo river is a strong barrier which 
produced the deep divergence between the northern and 
southern clades.

Other important barriers could be the final uplift of 
the Andes, the mountain ranges and the transverse val-
leys formation. We also found a synergistic role of the 
climatic changes, hyperaridity, glaciations and moun-
tain ranges formations as biogeographic factors, in the 
origin and preservation of the genetic divergence of T. 
elegans suggesting effects of several events and a com-
plex regional history in Chilean Mediterranean zone. 
All these factors structured deeply the genetic diver-
sity into T. elegans which is composed by six lineages 
distributed latitudinally and whose genetic distance 
is suggesting a cryptic complex. This study is only an 
open window for deeper and detailed studies into this 
endemic mouse opossum.
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Pardiñas. III14, III70 and IV62: Daniel González‑Acuña. NK96072 correspond 
to T. pallidior A and UP397 to T. pallidior B.

Additional file 2: Fig. S1. The maximum likelihood haplotype tree with 
the six lineages of T. elegans. The phylogeny by ML for the six lineages in 
T. elegans based on 49 cyt‑b haplotypes. Numbers of nodes are boot‑
strap values for ML and posterior probability for BI. Loa (Clade A); T. e. 
coquimbensis (Clade B); Aconcagua (Clade C); T. e. elegans (Clade D); South 
1 (Clade E); South 2 (Clade F). Terminal labels are as follow: haplotype 
number, locality number, number of specimens sharing haplotypes. Local‑
ity numbers correspond to Fig. 2 and Appendix I. Haplotype numbers 
are given in Appendix I. The ML and BI phylogenies were rooted using T. 
pallidior A and T. pallidior B as outgroup.

Additional file 3: Fig. S2. The maximum likelihood tree with the six line‑
ages of T. elegans. The phylogeny by ML for the six lineages of T. elegans 
based on 95 cyt‑b sequences. Numbers of nodes are bootstrap values for 
ML and posterior probability for BI. Loa (Clade A); T. e. coquimbensis (Clade 
B); Aconcagua (Clade C); T. e. elegans (Clade D); South 1 (Clade E); South 
2 (Clade F). Terminal labels show localities are as follow. The ML and BI 
phylogenies were rooted using T. pallidior A and T. pallidior B as outgroup. 

Northern clade encompasses the Loa, T. e. coquimbensis, Aconcagua and T. 
e. elegans lineages while the southern clade encompasses the South 1 and 
South 2 lineages.

Additional file 4: Fig. S3. Divergence times of the six lineages in T. 
elegans. Clades correspond to Fig. 2. Number of nodes are average values 
and bars in purple are the 95% HPD. A time scale show the geological 
ages. Bluish shaded areas represent the GPG (~1.68‑1.016 Mya) and the 
CPG (~0.7‑0.6 Mya). Arrows show two points of calibrations previously 
reported as time divergence estimates of T. elegans-T. pallidior and T. 
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